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Combinatorial Games

A combinatorial game is a two-player game with no hidden
information such that the consequence of each move will be known
before a move is made (ie no random elements).
We follow convention and let Left and Right denote Players I and II
respectively.
If G and H are combinatorial games, H is a Left option of G
(respectively a Right option) if Left (respectively Right) can move
directly from G to H.
We denote the set (class) of Left options by LG , and Right options
RG , with legal moves in G from the left by GL (respectively from the
right by GR).
A position of G are G and allthe positions of any option of G.
In a game of Normal play, the last player to move wins;in Mis\’ere
play, the last player to moves loses.
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Combinatorial Games (cont’d)

A run of G of length k is a sequence of positions G0,G1, . . . ,Gk such
that G0 = G and each Gi+1 ∈ LGi

∪ RGi
.

The Descending Game Condition: There is no infinite sequence of
games Gi = (Li ,Ri ), such that Gi+1 ∈ Li ∪ Ri for all i ∈ ω.
An alternating run is a run of successive moves alternating between
Left and Right
An alternating run of length k is a play of G if either k =∞ or else
Gk has no options for the player to move.
H is a subposition of G if there exists a sequence of consecutive (not
necessarily alternating) moves leading from G to H
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Classifying Combinatorial Games

The following are several structural constraints used to study games:

G is finite if there are finitely many distinct subpositions;
G is loopfree if every run of G is of finite length;
G is short if it is finite and loopfree;
G is impartial if Left and Right have the exact same moves available
from every subposition of G;
G is transfinite if it is not necessarily finite;
G is loopy if it is not necessarily loopfree;
G is partizan if it is not necessarily impartial;

Alexander Berenbeim A Tour of Games and Numbers Today 5 / 29



Classifying Combinatorial Games

The following are several structural constraints used to study games:

G is finite if there are finitely many distinct subpositions;
G is loopfree if every run of G is of finite length;
G is short if it is finite and loopfree;
G is impartial if Left and Right have the exact same moves available
from every subposition of G;
G is transfinite if it is not necessarily finite;
G is loopy if it is not necessarily loopfree;
G is partizan if it is not necessarily impartial;

Alexander Berenbeim A Tour of Games and Numbers Today 5 / 29



Classifying Combinatorial Games

The following are several structural constraints used to study games:
G is finite if there are finitely many distinct subpositions;

G is loopfree if every run of G is of finite length;
G is short if it is finite and loopfree;
G is impartial if Left and Right have the exact same moves available
from every subposition of G;
G is transfinite if it is not necessarily finite;
G is loopy if it is not necessarily loopfree;
G is partizan if it is not necessarily impartial;

Alexander Berenbeim A Tour of Games and Numbers Today 5 / 29



Classifying Combinatorial Games

The following are several structural constraints used to study games:
G is finite if there are finitely many distinct subpositions;
G is loopfree if every run of G is of finite length;

G is short if it is finite and loopfree;
G is impartial if Left and Right have the exact same moves available
from every subposition of G;
G is transfinite if it is not necessarily finite;
G is loopy if it is not necessarily loopfree;
G is partizan if it is not necessarily impartial;

Alexander Berenbeim A Tour of Games and Numbers Today 5 / 29



Classifying Combinatorial Games

The following are several structural constraints used to study games:
G is finite if there are finitely many distinct subpositions;
G is loopfree if every run of G is of finite length;
G is short if it is finite and loopfree;

G is impartial if Left and Right have the exact same moves available
from every subposition of G;
G is transfinite if it is not necessarily finite;
G is loopy if it is not necessarily loopfree;
G is partizan if it is not necessarily impartial;

Alexander Berenbeim A Tour of Games and Numbers Today 5 / 29



Classifying Combinatorial Games

The following are several structural constraints used to study games:
G is finite if there are finitely many distinct subpositions;
G is loopfree if every run of G is of finite length;
G is short if it is finite and loopfree;
G is impartial if Left and Right have the exact same moves available
from every subposition of G;

G is transfinite if it is not necessarily finite;
G is loopy if it is not necessarily loopfree;
G is partizan if it is not necessarily impartial;

Alexander Berenbeim A Tour of Games and Numbers Today 5 / 29



Classifying Combinatorial Games

The following are several structural constraints used to study games:
G is finite if there are finitely many distinct subpositions;
G is loopfree if every run of G is of finite length;
G is short if it is finite and loopfree;
G is impartial if Left and Right have the exact same moves available
from every subposition of G;
G is transfinite if it is not necessarily finite;

G is loopy if it is not necessarily loopfree;
G is partizan if it is not necessarily impartial;

Alexander Berenbeim A Tour of Games and Numbers Today 5 / 29



Classifying Combinatorial Games

The following are several structural constraints used to study games:
G is finite if there are finitely many distinct subpositions;
G is loopfree if every run of G is of finite length;
G is short if it is finite and loopfree;
G is impartial if Left and Right have the exact same moves available
from every subposition of G;
G is transfinite if it is not necessarily finite;
G is loopy if it is not necessarily loopfree;

G is partizan if it is not necessarily impartial;

Alexander Berenbeim A Tour of Games and Numbers Today 5 / 29



Classifying Combinatorial Games

The following are several structural constraints used to study games:
G is finite if there are finitely many distinct subpositions;
G is loopfree if every run of G is of finite length;
G is short if it is finite and loopfree;
G is impartial if Left and Right have the exact same moves available
from every subposition of G;
G is transfinite if it is not necessarily finite;
G is loopy if it is not necessarily loopfree;
G is partizan if it is not necessarily impartial;

Alexander Berenbeim A Tour of Games and Numbers Today 5 / 29



Partizan Games

The class of transfinite partizan games PG is recursively defined as
follows: Suppose that L and R denote two sets of games in

PG. Then the ordered pair G := 〈L,R〉 ∈ PG provided G satisfies the
Descending Game Condition.

We denote the ordered pair by
G = {L} | {R} = {LG} | {RG}.

The DCG is equivalent to the Conway induction principle: for
n ≥ 1, P is a property of an n − tuple of games G1, . . . ,Gn if it is a
property of all left and right options for Gi .

The endgame is given by 0 = {} | {}, as neither player can move. We
let 1 = {0} | {} and −1 = {} | {0}.
We say G ≥ 0 if there is a winning strategy for the left; G ≤ 0 if there
is a winning strategy for the right, and G‖0, or G is fuzzy if there is a
winning strategy for the first player, and G = 0 if there is a winning
strategy for the second player.

Alexander Berenbeim A Tour of Games and Numbers Today 6 / 29



Partizan Games

The class of transfinite partizan games PG is recursively defined as
follows: Suppose that L and R denote two sets of games in

PG. Then the ordered pair G := 〈L,R〉 ∈ PG provided G satisfies the
Descending Game Condition.We denote the ordered pair by
G = {L} | {R} = {LG} | {RG}.

The DCG is equivalent to the Conway induction principle: for
n ≥ 1, P is a property of an n − tuple of games G1, . . . ,Gn if it is a
property of all left and right options for Gi .

The endgame is given by 0 = {} | {}, as neither player can move. We
let 1 = {0} | {} and −1 = {} | {0}.
We say G ≥ 0 if there is a winning strategy for the left; G ≤ 0 if there
is a winning strategy for the right, and G‖0, or G is fuzzy if there is a
winning strategy for the first player, and G = 0 if there is a winning
strategy for the second player.

Alexander Berenbeim A Tour of Games and Numbers Today 6 / 29



Partizan Games

The class of transfinite partizan games PG is recursively defined as
follows: Suppose that L and R denote two sets of games in

PG. Then the ordered pair G := 〈L,R〉 ∈ PG provided G satisfies the
Descending Game Condition.We denote the ordered pair by
G = {L} | {R} = {LG} | {RG}.

The DCG is equivalent to the Conway induction principle: for
n ≥ 1, P is a property of an n − tuple of games G1, . . . ,Gn if it is a
property of all left and right options for Gi .

The endgame is given by 0 = {} | {}, as neither player can move. We
let 1 = {0} | {} and −1 = {} | {0}.
We say G ≥ 0 if there is a winning strategy for the left; G ≤ 0 if there
is a winning strategy for the right, and G‖0, or G is fuzzy if there is a
winning strategy for the first player, and G = 0 if there is a winning
strategy for the second player.

Alexander Berenbeim A Tour of Games and Numbers Today 6 / 29



Partizan Games

The class of transfinite partizan games PG is recursively defined as
follows: Suppose that L and R denote two sets of games in

PG. Then the ordered pair G := 〈L,R〉 ∈ PG provided G satisfies the
Descending Game Condition.We denote the ordered pair by
G = {L} | {R} = {LG} | {RG}.

The DCG is equivalent to the Conway induction principle: for
n ≥ 1, P is a property of an n − tuple of games G1, . . . ,Gn if it is a
property of all left and right options for Gi .

The endgame is given by 0 = {} | {}, as neither player can move. We
let 1 = {0} | {} and −1 = {} | {0}.

We say G ≥ 0 if there is a winning strategy for the left; G ≤ 0 if there
is a winning strategy for the right, and G‖0, or G is fuzzy if there is a
winning strategy for the first player, and G = 0 if there is a winning
strategy for the second player.

Alexander Berenbeim A Tour of Games and Numbers Today 6 / 29



Partizan Games

The class of transfinite partizan games PG is recursively defined as
follows: Suppose that L and R denote two sets of games in

PG. Then the ordered pair G := 〈L,R〉 ∈ PG provided G satisfies the
Descending Game Condition.We denote the ordered pair by
G = {L} | {R} = {LG} | {RG}.

The DCG is equivalent to the Conway induction principle: for
n ≥ 1, P is a property of an n − tuple of games G1, . . . ,Gn if it is a
property of all left and right options for Gi .

The endgame is given by 0 = {} | {}, as neither player can move. We
let 1 = {0} | {} and −1 = {} | {0}.
We say G ≥ 0 if there is a winning strategy for the left; G ≤ 0 if there
is a winning strategy for the right, and G‖0, or G is fuzzy if there is a
winning strategy for the first player, and G = 0 if there is a winning
strategy for the second player.

Alexander Berenbeim A Tour of Games and Numbers Today 6 / 29



Putting a group structure on games

Partizan games have an abelian group structure
Given G ,H ∈ PG, we define G + H as follows:

G + H = {GL + H,G + HL} | {GR + H,G + HR}

We define the negation of a game G ∈ PG by
−G = {−GR} | {−GL}
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Ordering Partizan Games

We define a partial ordering ≥ on PG as follows:

G ≥ H ⇐⇒ ¬(∃GR ∈ RG (H ≥ GR) ∨ ∃HL ∈ LH(HL ≥ G ))

with G ≥ 0 (similarly G ≤ 0) whenever there is no GR ≤ 0.
Then G > 0 (similarly G<0) defined by G ≥ 0 ∧ ¬(G ≤ 0).
PG is a partially ordered abelian group, i.e. if G ≥ H, then for any K ,
G + K ≥ H + K .
Furthermore, Lurie proved that PG is a universal embedding object in
the sense that every ordered abelian group embeds into PG.
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Numbers as Partizan Games

The surreal numbers (or just numbers), No, form a subclass of partizan
games such that the set of left and right options satisfy LG < RG .
We can inductively construct PG =

⋃
α∈On

PGα with

PG0 = {0}

PGα = {{GL} | {GR} : LG ,RG ⊂
⋃
β∈α

PGβ}

We form No =
⋃

α∈On
Noα by letting No0 = PG0 and

Noα = {{aL} | {aR} : Lα < Rα ∧ Lα,Rα ⊆
⋃
β∈α

Noβ}

Given this construction, one can readily encode the ordinals as games,
(or more precisely), as numbers as follows:

α = α|∅ = {αL} | {}.
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PGβ}

We form No =
⋃

α∈On
Noα by letting No0 = PG0 and

Noα = {{aL} | {aR} : Lα < Rα ∧ Lα,Rα ⊆
⋃
β∈α

Noβ}

Given this construction, one can readily encode the ordinals as games,
(or more precisely), as numbers as follows:

α = α|∅ = {αL} | {}.
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Numbers as subsets of ordinals

An alternate formulation of No is given by Gonshor as follows:
a ∈ No if and only if a : α→ 2, where 2 = {	,⊕},and we induce an
ordering by

	 < undefined < ⊕
so that

a < b ⇐⇒ ∃α∀β ∈ αa(β) = b(β)

∧a(α) 6= b(α) ∧ (a(α) = 	 ∨ b(α) = ⊕)

Furthermore, there is the partial order ≤s , where a ≤s b if and only if
a v b as functions.
As in the case of games, surreal numbers are constructed from simpler
numbers, i.e. there is a canonical representation a = {aL} | {aR}.

Theorem
(Fundamental Existence Theorem) For all sets of numbers F < G , there is
a unique c of minimal length such that F < c < G .
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Numbers as sequences of ordinals

By the previous construction, we have

No =
⋃
α∈On

α2

We can alternately define numbers by first considering O the space
<OnOn× On, where f ∈ O is a list of ordinal length α of pairs of
ordinal numbers.
We can then define an equivalence relation R on O by ρf = ρg , where
ρ is a function defined by transfinite recursion and pattern matching:

We match f with
〈α, β〉 ⇒ 〈α, β〉
h : 〈α1, β1〉 : 〈α2, β2〉 : τ ⇒ match β1, α2 with

(0, 0)⇒ h : ρ(〈α1, β2〉 : τ)
(_, 0)⇒ h : ρ(〈α, β1 + β2)〉 : τ)
(0,_)⇒ h : ρ(〈α1 + α2, β2〉 : τ)
(_,_)⇒ h : 〈α1, β1〉 : ρ(〈α2, β2〉 : τ).
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Numbers as sequences of ordinals

We can then identify No = ρ(O)

In turn, we can describe a surreal number a as consisting of φa many
ordered pairs 〈αµ, βµ〉 where αµ(a) = 0 if µ = 0, or µ ∈ Lim(φa), or
µ > φa (if we consider OnOn× On restricted to eventually zero
sequences instead).
βµ(a) = 0 implies that µ = maxφa or µ ≥ φa.
We let γµ(a) =

⊕
i≤µ

αµ(a) and set a+ =
⊕
µ∈φa

αµ(a).

We can see this agrees with the previous construction of the surreal
numbers, as ιa =

⊕
µ∈φa

αµ ⊕ βµ
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Arithmetic Operations

As mentioned in an earlier section, there is a genetic definition for
addition of games which restricts to addition on the ordinary numbers.
The genetic definition of multiplication is as follows:

ab = {aLb + abL − aLbL, aRb + abR − aRbR}|

{aLb + abR − aLbR , aRb + abR − aRbL}
We define multiplicative inverses for a > 0 as follows: let 〈a1, . . . , an〉
be a finite sequence where ai ∈ La ∪ Ra\{0}.
For b ∈ No, $ define b◦ai as the unique solution to

(a− ai )b + aix = 1

The solution exists by the inductive hypothesis, as each ai is an initial
segment of a with an inverse, and uniqueness is automatic.
Finally, let 〈〉 = 0, and 〈a1, . . . , an, an+1〉 = 〈a1, . . . , an〉◦an+1.Now
define a−1 = F |G , where F consists of 〈a1, . . . , an〉 where the number
of ai ∈ La is even and G where the number of ai ∈ La is odd.
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For b ∈ No, $ define b◦ai as the unique solution to

(a− ai )b + aix = 1

The solution exists by the inductive hypothesis, as each ai is an initial
segment of a with an inverse, and uniqueness is automatic.

Finally, let 〈〉 = 0, and 〈a1, . . . , an, an+1〉 = 〈a1, . . . , an〉◦an+1.Now
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Ordinal Functions

One natural function to consider is the length function, which ought
to return the domain of a surreal number a. This can be given by

ι(a) = {ι(aL), ι(aR)} | {}

One also has the ω function

ω(a) = {0, nω(aL)} | {ω(aR)2−n}

Let ω(n)(a) denote the n fold composition of ω(· · · (ω(a) · · · ), with
ω(0)(a) = a and ω(n+1)(a) = ω(ω(n)(a)).
We define

ε(a) = {ω(n)(1), ω(n)(ε(aL) + 1)} | {ω(n)(ε(aR)− 1)}
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exp, log, and beyond: Two Normal Forms

One can also provide genetic definitions for exp and log.
Conway showed that all surreal numbers have a normal form with base
ω, i.e. for all a ∈ No there is a descending sequence (ai ) of length νa
and ri ∈ R× such that

a =
∑
i∈νa

ω(ai )ri =
∑

ωa
i ri

One can also put a Ressayre normal form on surreals, namely,

a =
∑
µ∈%a

exp(yµ)rµ

, where there are %µ many summands, and yµ is a descending
sequences of surreal numbers.
These two respective normal forms can be used to define Krull
valuations −` on No, where ` : No× → No where
`(a) = max{ai ∈ No | ri 6= 0}.
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Sign sequence lemma preliminaries

The

concatenation operation respects standard results on ordinal length, i.e.

ι(a_ b) = ι(a)⊕ ι(b)

as can be verified by an induction argument on the lengths of numbers.
It is known by an induction argument that ι(a + b) ≤ ι(a) + ι(b).
The short term goal of my research is prove the bound
ι(ab) ≤ ι(a)ι(b)

Towards that end, we first need to describe Gonshor’s sign sequence
lemma:
Given a ∈ No>0, define a[ to be the surreal number

attained by omitting the first ⊕ sign.
Similarly, given a ∈ No<0, define a] to be the surreal number attained
by omitting the first 	 sign.

Alexander Berenbeim A Tour of Games and Numbers Today 16 / 29



Sign sequence lemma preliminaries

The

concatenation operation respects standard results on ordinal length, i.e.

ι(a_ b) = ι(a)⊕ ι(b)

as can be verified by an induction argument on the lengths of numbers.

It is known by an induction argument that ι(a + b) ≤ ι(a) + ι(b).
The short term goal of my research is prove the bound
ι(ab) ≤ ι(a)ι(b)

Towards that end, we first need to describe Gonshor’s sign sequence
lemma:
Given a ∈ No>0, define a[ to be the surreal number

attained by omitting the first ⊕ sign.
Similarly, given a ∈ No<0, define a] to be the surreal number attained
by omitting the first 	 sign.

Alexander Berenbeim A Tour of Games and Numbers Today 16 / 29



Sign sequence lemma preliminaries

The

concatenation operation respects standard results on ordinal length, i.e.

ι(a_ b) = ι(a)⊕ ι(b)

as can be verified by an induction argument on the lengths of numbers.
It is known by an induction argument that ι(a + b) ≤ ι(a) + ι(b).

The short term goal of my research is prove the bound
ι(ab) ≤ ι(a)ι(b)

Towards that end, we first need to describe Gonshor’s sign sequence
lemma:
Given a ∈ No>0, define a[ to be the surreal number

attained by omitting the first ⊕ sign.
Similarly, given a ∈ No<0, define a] to be the surreal number attained
by omitting the first 	 sign.

Alexander Berenbeim A Tour of Games and Numbers Today 16 / 29



Sign sequence lemma preliminaries

The

concatenation operation respects standard results on ordinal length, i.e.

ι(a_ b) = ι(a)⊕ ι(b)

as can be verified by an induction argument on the lengths of numbers.
It is known by an induction argument that ι(a + b) ≤ ι(a) + ι(b).
The short term goal of my research is prove the bound
ι(ab) ≤ ι(a)ι(b)

Towards that end, we first need to describe Gonshor’s sign sequence
lemma:
Given a ∈ No>0, define a[ to be the surreal number

attained by omitting the first ⊕ sign.
Similarly, given a ∈ No<0, define a] to be the surreal number attained
by omitting the first 	 sign.

Alexander Berenbeim A Tour of Games and Numbers Today 16 / 29



Sign sequence lemma preliminaries

The

concatenation operation respects standard results on ordinal length, i.e.

ι(a_ b) = ι(a)⊕ ι(b)

as can be verified by an induction argument on the lengths of numbers.
It is known by an induction argument that ι(a + b) ≤ ι(a) + ι(b).
The short term goal of my research is prove the bound
ι(ab) ≤ ι(a)ι(b)

Towards that end, we first need to describe Gonshor’s sign sequence
lemma:

Given a ∈ No>0, define a[ to be the surreal number
attained by omitting the first ⊕ sign.

Similarly, given a ∈ No<0, define a] to be the surreal number attained
by omitting the first 	 sign.

Alexander Berenbeim A Tour of Games and Numbers Today 16 / 29



Sign sequence lemma preliminaries

The

concatenation operation respects standard results on ordinal length, i.e.

ι(a_ b) = ι(a)⊕ ι(b)

as can be verified by an induction argument on the lengths of numbers.
It is known by an induction argument that ι(a + b) ≤ ι(a) + ι(b).
The short term goal of my research is prove the bound
ι(ab) ≤ ι(a)ι(b)

Towards that end, we first need to describe Gonshor’s sign sequence
lemma:
Given a ∈ No>0, define a[ to be the surreal number

attained by omitting the first ⊕ sign.

Similarly, given a ∈ No<0, define a] to be the surreal number attained
by omitting the first 	 sign.

Alexander Berenbeim A Tour of Games and Numbers Today 16 / 29



Sign sequence lemma preliminaries

The

concatenation operation respects standard results on ordinal length, i.e.

ι(a_ b) = ι(a)⊕ ι(b)

as can be verified by an induction argument on the lengths of numbers.
It is known by an induction argument that ι(a + b) ≤ ι(a) + ι(b).
The short term goal of my research is prove the bound
ι(ab) ≤ ι(a)ι(b)

Towards that end, we first need to describe Gonshor’s sign sequence
lemma:
Given a ∈ No>0, define a[ to be the surreal number

attained by omitting the first ⊕ sign.
Similarly, given a ∈ No<0, define a] to be the surreal number attained
by omitting the first 	 sign.

Alexander Berenbeim A Tour of Games and Numbers Today 16 / 29



The Sign Sequence Lemma: Reductions

Given a surreal number a =
∑
i∈νa

ωai ri in normal form, we define the

reduced sequence (aoi |i ∈ νa) by omitting 	 from the following sign
sequences:

given γ ∈ On, if ai (γ) = 	 and there exists j < i such that
aj(δ) = ai (δ) for all δ ≤ γ, then omit the δth 	;
if i is a successor, ai−1 _ 	 < ai and if ri−1 is not a dyadic rational,
then omit 	 after ai−1 in ai .
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The Sign Sequence Lemma

Theorem
Given a = (〈αi , βi 〉)i∈φa, then ωa has the sign sequence

〈ωγ0 , ωγ0+1β〉_ (〈ωγi , ωγ1+1βi 〉)0<i<µ

Theorem
Given a positive real r with sign sequence (〈ρi , σi 〉), the sign sequence of
ωar is

(ωa) _ 〈ωa+ρ[0, ω
a+σ0〉_ (〈ωa+ρi , ω

a+σi 〉 : 0 < i ≤ ιr)

with ωa+ρ and ωa+σ being the standard ordinal multiplication (with
absorption). If r is a negative real, we reverse the signs.
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The Sign Sequence Lemma ctd

Theorem

M Given a =
∑
i∈νa

ωai ri ,

(a) =_i∈νa (ωaoi ri )

Corollary

For all a ∈ No, with Conway normal form
∑
i∈νa

ω(ai )ri , we have

ι(a) =
⊕
i∈νa

ι(ω(aoi )ri )

Proof.
This follows directly from ι(a_ b) = ι(a)⊕ ι(b), and by induction on
νa.
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Some facts

Supposing that ι(a) ≤ ι(b) ≤ ι(c):

ι(a + b) ≤ ι(a) + ι(b);
ι(ab) ≤ 3ι(a)+ι(b);
|ι(a−1)| ≤ ℵ0|ι(a)|;
For a ∈ No\D, then |ι(ω(a))| = |ι(a)|;
for any non-zero real r and a, |ι(ω(a)) · r | = |ι(ω(a))|;
If ω(b)r is a term in the normal from of a, then

ι(ω(b)) ≤ ι(a);
For a =

∑
α∈β

ω(aα)rα,

then |β| ≤ |lubα∈β[ι(aα)ω]|. (This result refers to the least upper bound of
ordinals on the right hand side, and cardinalities on the left hand side).
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Some facts ctd

For a =
∑
α∈β

ω(aα)rα, then

|ι(a)| ≤ |lubα∈βι(aα), ω|;
For a =

∑
α∈β

ω(aα)rα and

lubα∈β(|β|, |ι(aα)|,ℵ0) ≤ κ, then |ι(a)| ≤ κ.
The set of surreals with lengths less than a fixed ordinal ε number
form a subfield of surreal numbers;
For a1, . . . , an arbitrary surreal numbers and

r1, . . . , rn rational numbers, then |ι(
∑

riai )| ≤ |max ι(ai )|ℵ0.
An ordinal upperbound for the cardinality of κ will be the

least ε number larger than α.
The subset of surreal numbers {a | |ι(a)| ≤ κ} for any

fixed infinite cardinal κ will form a real closed field. Furthermore, since all
operations will depend on finitely many elements of the condition ι(a) ≤ d ,
we may strengthen this to ι(a) < d .
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Some facts ctd

For dyadic rationals a > 0,

ι(a) = ι([a]) + ι(a− [a]) where [a] denotes the natural number part of a;
For a, b ∈ R, ι(ab) ≤ ι(a)ι(b);
Let x , y ∈ No, and 0 < r ∈ R, then we have:

1 (x + y)+ ≤ x+ + y+;
2 ι(ωx) = ωx+α = ωx+χa for some ordinal α = χa > 0. Specifically, we

let χ : No→ On be the mapping which sends a to the corresponding
α. This χ will be defined shortly.

3 ι(ωx r) = ι(ωx)⊕ ωx+ ⊗ ι(r [)
4 r is a dyadic rational, then $ω(ωx r)=ι(ωx) + ωx+ι(r [);
5 if r is not a dyadic rational, then ι(ωx r) = ι(ωx) + ωx+(ω −m) where

m ∈ ω is the coefficient of ωx+ in the Cantor normal form of ι(ω(x)).
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Some facts ctd

For all surreal numbers x and y such that

ι(ωxωy ) ≤ ι(ωx)ι(ωy ), then for all r , s ∈ R,

ι((ωx r)(ωy s)) ≤ ι(ωx r)ι(ωy s)

If a = ωx r and b = ωy s, then ι(ab) ≤ ι(a)ι(b).
For all a, ι(a) ≤ ι(ωa) ≤ ωι(a);
For all a, νa ≤ ιa;
For all α ∈ νa, ι(ωaαrα) ≤ ι(a);
If ξ ∈ On such that ι(ωaαrα) ≤ ξ for all α ∈ ν(a), then ι(a) ≤ ξν(a).
For any surreal numbers a and b, ι(ab) ≤ ωι(a)2ι(b)2
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If a = ωx r and b = ωy s, then ι(ab) ≤ ι(a)ι(b).
For all a, ι(a) ≤ ι(ωa) ≤ ωι(a);
For all a, νa ≤ ιa;
For all α ∈ νa, ι(ωaαrα) ≤ ι(a);
If ξ ∈ On such that ι(ωaαrα) ≤ ξ for all α ∈ ν(a), then ι(a) ≤ ξν(a).
For any surreal numbers a and b, ι(ab) ≤ ωι(a)2ι(b)2
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The χ map

Definition

We define χ : No→ On as the map such that ι(ω(a)) = ωa+χ(a), as
follows:

χ(a) =

{
(
⊕
µ∈φa

ζµ)⊕ 1 φa ∈ Lim(On)⊕
ζµ ow

where ζµ is defined as follows:
First, let ξµ = ωγµ ⊕ ωγµ+1βµ, and let suppose each ξµ =

∑
i∈Nξµ

ωδµ,i ,

where δµ,i ≥ δµ,i+1

Then define

ζµ,i =

{
ωζ ∃ζ ∈ On(γµ ⊕ 1⊕ δµ,i = a+ + ζ)
0 ow

Finally, set ζµ =
∑
Nξµ

ζµ,i .
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Current work product lemma restated

The goal is to strengthen the bound provided by Lou van den Dries
and Philip Ehrlich from ι(ab) ≤ ωι(a)2ι(b)2 to ι(a)ι(b).
We can begin by building off of their work which shows that
ι(ω(a + b)) ≤ ι(ω(a))ι(ω(b)).
If we can prove the product lemma for the case where a > b so that
x = ωa + ωb, and y = ωc , that ι(xy) ≤ ι(x)ι(y), then by induction
this can prove the product lemam in general.
In turn, since a+ = ao+, it suffices to show that if χ(ab) ≤ χ(a)χ(b),
as the principle obstruction is reduction.
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Current work product lemma restated

Proposition

Let a > b and c be arbitrary surreal numbers. Consider (b + c)o the
reduction of (b + c) with respect to a + c and bo the reduction of b with
respect to a. Then χ((b + c)o) ≤ χ((b)o)χ(c) implies
ι(ω((b + c)o)) ≤ ι(bo)ι(c).

Proof.

Recall from Fact ??, that (a + b)+ ≤ a+ + b+, and ιω(x) = ωx+χx . Since
reduction only eliminates 	 symbols, we find that

(b + c)o+ = (b + c)+

.
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Current work product lemma restated

Proof.
so if χ((b + c)o ≤ χ((bo))χ(c), we have:

ι((b + c)o) = ω(b+c)o+χ((b + c)o)

= ω(b+c)+χ((b + c)o)

≤ ωb+ωc+χ((b + c)o)

≤ ωb+ωc+χ(bo)χ(c)

= ωb+χ(bo)ωc+χ(c)

= ωbo+χ(bo)ωc+χ(c)

= ι(bo)ι(c)

Theorem
Let a > b and c be arbitrary surreal numbers. Consider (b + c)o the
reduction of (b + c) with respect to a + c and bo the reduction of b with
respect to a. Then χ((b + c)o) ≤ χ(bo)χ(c).
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Applications

The following are known

α is an ordered abelian group if and only if α ∈ Γ”On

α is an ordered commutative ring if and only if $α ∈ ∆"On"

α is a real closed field if and only if α ∈ E”On
If we can prove the product lemma in its strict form, then we also have

α is an additive divisible ordered abelian group if and only if
α ∈ Γ”Λ”On

α\0 is a multiplicative divisible ordered abelian group if and only if
α ∈ ∆”Λ”On.

Moreover, these constructions are functorial in the sense that they can be
defined as enriched categories over the category of the ordinals.

Results for Ran, valued fields, and real differentiable fields will likely
follow, and likely correspond to λ and κ numbers that were omitted
from this talk.
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Simplicity

Proposition
(No, <o

s ) is a separative partial order under reverse inclusion.

Proof.
It is immediate that No is partially ordered by <s , and so No will also be
partially ordered by the opposite <o

s , with top element 0.
Now suppose a, b ∈ No have tree rank α, β respectively and are such that
a 6≤o

s b. Then b 6< a, and so either a < b or a⊥b.
If a < b, then there is some x ∈ {−,+} such that a_ x < b. Let y = ¬x
(i.e. ¬− = + and ¬+ = −), and consider c = a_ y . Then a < c , hence
c ≤o

s a and c⊥b as desired. If a⊥b, then we may take a = c .
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