Theorem

Mekler Constructions and Preservation of Stability

Alexander Berenbeim

2019-04-17

Alexander Berenbeim

Mekler Constructions and Preservation of

2019-04-17 1 / 26

Outline

Graphs and Groups

- Definitions
- Graphs
- Types of the Group
- Transversals

2 K-dependence

- Definitions
- The formula free description of k-dependence
- The Preservation of k-dependence
- Questions to consider

• Idea: For any graph Γ and odd prime p, we will define a 2-nilpotent group of exponent p, denoted $G(\Gamma)$

- Idea: For any graph Γ and odd prime p, we will define a 2-nilpotent group of exponent p, denoted $G(\Gamma)$
- G(Γ) is freely generated in the variety of 2-nilpotent groups of exponent p by the vertices of Γ by imposing the condition that two generators commute if and only if they share an edge in \$Γ\$

- Idea: For any graph Γ and odd prime p, we will define a 2-nilpotent group of exponent p, denoted G(Γ)
- G(Γ) is freely generated in the variety of 2-nilpotent groups of exponent p by the vertices of Γ by imposing the condition that two generators commute if and only if they share an edge in \$Γ\$
- Mekler's construction is a functorial construction that preserves stability;pause it also preserves NIP, k-dependence, and NTP₂.
- In this talk, I'll focus on the preservation of k-dependence.

Some Group Theory Reminders

• The exponent of a group G is the least common multiple of the orders of all elements of the group.

Some Group Theory Reminders

- The exponent of a group G is the least common multiple of the orders of all elements of the group.
- G is nilpotent if there is a central series terminating with G, i.e. there is a series of normal subgroups such that

$$e = G_0 \trianglelefteq G_1 \trianglelefteq \cdots \trianglelefteq G_{n-1} \trianglelefteq G_n = G$$

with $G_{i+1}/G_i \leq Z(G/G_i)$, i.e. $[G, G_{i+1}] \leq G_i$

- G is nilpotent class n if n is the least n such that G has a central series length n
- Any nonabelian group G such that G/Z(G) is abelian has nilpotency class 2 with central series

$$\{e\} \trianglelefteq Z(G) \trianglelefteq G$$

• Examples of 2-nilpotent groups include the Heisenberg group and the quaternions.

Alexander Berenbeim

An irreflexive undirected graph Γ is nice if

Alexander Berenbeim

An irreflexive undirected graph Γ is nice if

• there are at least two vertices, and for any two distinct vertices x, ythere is a vertex z not equal to x or y such that $E(x, z) \land \neg E(y, z)$

An irreflexive undirected graph Γ is nice if

- there are at least two vertices, and for any two distinct vertices x, ythere is a vertex z not equal to x or y such that $E(x, z) \land \neg E(y, z)$
- 2 Γ is triangle and square free.

Covers of nice graphs

Alexander Berenbeim

Definition

Let Γ be an infinite nice graph. A graph $\Gamma^+ \supset \Gamma$ as a subgraph is a cover of Γ if for all $b \in \Gamma^+ \setminus \Gamma$, one of the following holds:

Covers of nice graphs

Definition

Let Γ be an infinite nice graph. A graph $\Gamma^+ \supset \Gamma$ as a subgraph is a cover of Γ if for all $b \in \Gamma^+ \setminus \Gamma$, one of the following holds:

 ∃!a ∈ Γ⁺ that is joined to b, and a ∈ Γ such that it has infinitely many adjacent vertices in Γ

Let Γ be an infinite nice graph. A graph $\Gamma^+ \supset \Gamma$ as a subgraph is a cover of Γ if for all $b \in \Gamma^+ \setminus \Gamma$, one of the following holds:

- $\exists ! a \in \Gamma^+$ that is joined to b, and $a \in \Gamma$ such that it has infinitely many adjacent vertices in Γ
- b is joined to no vertex in Γ^+

Let Γ be an infinite nice graph. A graph $\Gamma^+ \supset \Gamma$ as a subgraph is a cover of Γ if for all $b \in \Gamma^+ \setminus \Gamma$, one of the following holds:

- $\exists ! a \in \Gamma^+$ that is joined to b, and $a \in \Gamma$ such that it has infinitely many adjacent vertices in Γ
- b is joined to no vertex in Γ^+

Definition

A cover Γ^+ is a λ -cover if

Let Γ be an infinite nice graph. A graph $\Gamma^+ \supset \Gamma$ as a subgraph is a cover of Γ if for all $b \in \Gamma^+ \setminus \Gamma$, one of the following holds:

- $\exists ! a \in \Gamma^+$ that is joined to b, and $a \in \Gamma$ such that it has infinitely many adjacent vertices in Γ
- b is joined to no vertex in Γ^+

Definition

A cover Γ^+ is a λ -cover if

for all a ∈ Γ, there number of vertices in Γ⁺\Γ joined to a is λ if a is joined to infinitely many vertices in Γ, and 0 otherwise;

Let Γ be an infinite nice graph. A graph $\Gamma^+ \supset \Gamma$ as a subgraph is a cover of Γ if for all $b \in \Gamma^+ \setminus \Gamma$, one of the following holds:

- $\exists ! a \in \Gamma^+$ that is joined to b, and $a \in \Gamma$ such that it has infinitely many adjacent vertices in Γ
- b is joined to no vertex in Γ^+

Definition

A cover Γ^+ is a λ -cover if

- for all a ∈ Γ, there number of vertices in Γ⁺\Γ joined to a is λ if a is joined to infinitely many vertices in Γ, and 0 otherwise;
- the number of new vertices in $\Gamma^+\backslash\Gamma$ which are not joined to any other vertex in Γ^+ is λ

Let Γ be an infinite nice graph. A graph $\Gamma^+ \supset \Gamma$ as a subgraph is a cover of Γ if for all $b \in \Gamma^+ \setminus \Gamma$, one of the following holds:

- $\exists ! a \in \Gamma^+$ that is joined to b, and $a \in \Gamma$ such that it has infinitely many adjacent vertices in Γ
- b is joined to no vertex in Γ^+

Definition

A cover Γ^+ is a λ -cover if

- for all $a \in \Gamma$, there number of vertices in $\Gamma^+ \setminus \Gamma$ joined to a is λ if a is joined to infinitely many vertices in Γ , and 0 otherwise;
- the number of new vertices in $\Gamma^+\backslash\Gamma$ which are not joined to any other vertex in Γ^+ is λ

A proper cover of a nice graph is never a nice graph.

Definition

For $g, h \in G$

■
$$g \sim h \text{ if } C_G(g) = C_G(h), \text{ i.e.}$$

{ $x \in G \mid gx = xg$ } = { $x \in G \mid hx = xh$]

Definition

For $g, h \in G$

•
$$g \sim h \text{ if } C_G(g) = C_G(h), \text{ i.e.}$$

 $\{x \in G \mid gx = xg\} = \{x \in G \mid hx = xh\}$

2 $g \approx h$ if there exists $r \in \omega$ and $c \in Z(G)$ such that $g = h^r c$

Definition

For $g, h \in G$

•
$$g \sim h \text{ if } C_G(g) = C_G(h), \text{ i.e.}$$

 $\{x \in G \mid gx = xg\} = \{x \in G \mid hx = xh\}$

2 $g \approx h$ if there exists $r \in \omega$ and $c \in Z(G)$ such that $g = h^r c$

$$g \equiv_Z h \text{ if } gZ(G) = hZ(G)$$

Definition

For $g, h \in G$

•
$$g \sim h \text{ if } C_G(g) = C_G(h), \text{ i.e.}$$

 $\{x \in G \mid gx = xg\} = \{x \in G \mid hx = xh\}$

2 $g \approx h$ if there exists $r \in \omega$ and $c \in Z(G)$ such that $g = h^r c$

3 $g \equiv_Z h$ if gZ(G) = hZ(G)

One can readily see that $g \equiv_Z h \Rightarrow g \approx h \Rightarrow g \sim h$

Alexander Berenbeim

Definition

For $g \in G$, and $n \in \omega$, we say *g is type n\$ if there are n different \approx classes in the \sim class $[g]_{\sim}$.

Alexander Berenbeim

Definition

For $g \in G$, and $n \in \omega$, we say *g is type n\$ if there are n different \approx classes in the \sim class $[g]_{\sim}$. We say g is isolated if all $h \in G \setminus Z(G)$ which commute with g are \approx equivalent.

Definition

For $g \in G$, and $n \in \omega$, we say *g is type n\$ if there are n different \approx classes in the \sim class $[g]_{\sim}$. We say g is isolated if all $h \in G \setminus Z(G)$ which commute with g are \approx equivalent.

Proposition

Definition

For $g \in G$, and $n \in \omega$, we say *g is type n\$ if there are n different \approx classes in the \sim class $[g]_{\sim}$. We say g is isolated if all $h \in G \setminus Z(G)$ which commute with g are \approx equivalent.

Proposition

We can partition all elements of *G* into the following 5 ∅ definable classes: **3** *Z*(*G*);

Definition

For $g \in G$, and $n \in \omega$, we say *g is type n\$ if there are n different \approx classes in the \sim class $[g]_{\sim}$. We say g is isolated if all $h \in G \setminus Z(G)$ which commute with g are \approx equivalent.

Proposition

- Image: Z(G);
- 2 elements of type 1^{ν} , ie elements of type 1 which are not isolated;

Definition

For $g \in G$, and $n \in \omega$, we say *g is type n\$ if there are n different \approx classes in the \sim class $[g]_{\sim}$. We say g is isolated if all $h \in G \setminus Z(G)$ which commute with g are \approx equivalent.

Proposition

- Image: Z(G);
- 2 elements of type 1^{ν} , ie elements of type 1 which are not isolated;
- **(**) elements of type 1^{ι} , ie elements of type 1 which are isolated;

Definition

For $g \in G$, and $n \in \omega$, we say *g is type n\$ if there are n different \approx classes in the \sim class $[g]_{\sim}$. We say g is isolated if all $h \in G \setminus Z(G)$ which commute with g are \approx equivalent.

Proposition

- Image: Z(G);
- 2 elements of type 1^{ν} , ie elements of type 1 which are not isolated;
- \bigcirc elements of type 1^{ι}, ie elements of type 1 which are isolated;
- elements of type p;

Definition

For $g \in G$, and $n \in \omega$, we say *g is type n\$ if there are n different \approx classes in the \sim class $[g]_{\sim}$. We say g is isolated if all $h \in G \setminus Z(G)$ which commute with g are \approx equivalent.

Proposition

- Image: Z(G);
- 2 elements of type 1^{ν} , ie elements of type 1 which are not isolated;
- \bigcirc elements of type 1^{ι}, ie elements of type 1 which are isolated;
- elements of type p;
- **o** elements of type p-1.

Definition

For $g \in G$, and $n \in \omega$, we say *g is type n\$ if there are n different \approx classes in the \sim class $[g]_{\sim}$. We say g is isolated if all $h \in G \setminus Z(G)$ which commute with g are \approx equivalent.

Proposition

We can partition all elements of G into the following 5 \emptyset definable classes:

- Image: Z(G);
- 2 elements of type 1^{ν} , ie elements of type 1 which are not isolated;
- elements of type 1ⁱ, ie elements of type 1 which are isolated;
- elements of type p;
- **o** elements of type p-1.

Additionally, for all elements g of type p, the noncentral elements commuting are precisely $[g]_{\sim}$ and an element b of type 1^{ν} along with $[b]_{\sim}$.

2019-04-17

8/26

Alexander Berenbeim

For every $g \in G$ of type p, we say b of type 1^{ν} which commutes with g is a handle of g.

For every $g \in G$ of type p, we say b of type 1^{ν} which commutes with g is a handle of g.

• Handles are definable from g up to \sim equivalence

For every $g \in G$ of type p, we say b of type 1^{ν} which commutes with g is a handle of g.

- Handles are definable from g up to \$~\$-equivalence
- Since Z(G) and G/Z(G) are elementary abelian p-groups, we can view them as \mathbb{F}_p vector spaces.

For every $g \in G$ of type p, we say b of type 1^{ν} which commutes with g is a handle of g.

- Handles are definable from g up to equivalence
- Since Z(G) and G/Z(G) are elementary abelian p-groups, we can view them as \mathbb{F}_p vector spaces.
- Independence considered over some supergroup of Z(G) is linear independence in terms of the corresponding 𝔽_p vector space.

Transversals

Let $G \models Th(G(\Gamma))$. Then:

Alexander Berenbeim

< A > < E

Transversals

- Let $G \models Th(G(\Gamma))$. Then:
 - A 1^ν transversal of G is a set X^ν with one representative for each ~ class of elements of type 1^ν;

- A 1^{ν} transversal of G is a set X^{ν} with one representative for each \sim class of elements of type 1^{ν} ;
- g is proper if it is not the product of any elements of type 1^{ν} ;

- A 1^ν transversal of G is a set X^ν with one representative for each ~ class of elements of type 1^ν;
- g is proper if it is not the product of any elements of type 1^{\nu};
- A p-transveral of G is a set X^p of pairwise \sim inequivalent proper elements of type p in G that is maximal with the property:

- A 1^{ν} transversal of G is a set X^{ν} with one representative for each \sim class of elements of type 1^{ν} ;
- g is proper if it is not the product of any elements of type 1^{\nu};
- A p-transveral of G is a set X^p of pairwise \sim inequivalent proper elements of type p in G that is maximal with the property: "if Y is a finite subset of X^p and all elements of Y have the same handle, then Y is independent modulo the subgroup generated by all elements of type 1^{ν} in G and Z(G)."

- A 1^ν transversal of G is a set X^ν with one representative for each ~ class of elements of type 1^ν;
- g is proper if it is not the product of any elements of type 1^{\nu};
- A p-transveral of G is a set X^p of pairwise \sim inequivalent proper elements of type p in G that is maximal with the property: "if Y is a finite subset of X^p and all elements of Y have the same handle, then Y is independent modulo the subgroup generated by all elements of type 1^{ν} in G and Z(G)."
- A 1^ι transversal of G is a set of X_ι representatives of ~ classes of proper elements of type 1^ι which is maximally independent modul the subgroup generated by the type 1^ν elements and Z(G);

Alexander Berenbeim

• A set $X \subset G$ is a transversal of G if $X = X^{\nu} \sqcup X^{p} \sqcup X^{\iota}$;

- A set $X \subset G$ is a transversal of G if $X = X^{\nu} \sqcup X^{p} \sqcup X^{\iota}$;
- A subset Y of a transversal is a partial transversal if it is closed under handles;

- A set $X \subset G$ is a transversal of G if $X = X^{\nu} \sqcup X^{p} \sqcup X^{\iota}$;
- A subset Y of a transversal is a partial transversal if it is closed under handles;

Lemma

For $G \models Th(G(\Gamma))$, and given a small tuple of variables $\bar{x} = \bar{x}^{\nu} \frown \bar{x}^{p} \frown \bar{x}^{\iota}$, there is a partial type $\Phi(\bar{x})$ such that for any typles $\bar{a}^{\nu}, \bar{a}^{p}, \bar{a}^{\iota}$ in G, we have $G \models \Phi(\bar{a}^{\nu}, \bar{a}^{p}, \bar{a}^{\iota})$ if and only if every element belongs to the appropriate type, and $\bar{a} = \bar{a}^{\nu} \frown \bar{a}^{\rho} \frown \bar{a}^{\iota}$ can be extended to a transversal of G.

But Wait! There's More (Transversal Facts)

Alexander Berenbeim

Mekler Constructions and Preservation of

2019-04-17 12/26

For a nice graph Γ, there is an interpretation M such that for any G ⊨ Th(G(Γ)), we have M(G) = (V, R), where V = {g ∈ G | g is of type 1^ν, g ∉ Z(G)}/ ≈ and ([g]_≈, [h]_≈) ∈ R ⇔ gh = hg, is a model of \$Th(Γ)\$

- For a nice graph Γ, there is an interpretation M such that for any G ⊨ Th(G(Γ)), we have M(G) = (V, R), where V = {g ∈ G | g is of type 1^ν, g ∉ Z(G)}/ ≈ and ([g]_≈, [h]_≈) ∈ R ⇔ gh = hg, is a model of \$Th(Γ)\$
- The full set of transversals produces a cover of a nice graph

- For a nice graph Γ, there is an interpretation M such that for any G ⊨ Th(G(Γ)), we have M(G) = (V, R), where V = {g ∈ G | g is of type 1^ν, g ∉ Z(G)}/ ≈ and ([g]_≈, [h]_≈) ∈ R ⇔ gh = hg, is a model of \$Th(Γ)\$
- The full set of transversals produces a cover of a nice graph
- A transversal X can be viewed as a cover of the nice graph given by elements of the type 1^ν in X, with the edge relation given by commutation

- For a nice graph Γ, there is an interpretation M such that for any G ⊨ Th(G(Γ)), we have M(G) = (V, R), where V = {g ∈ G | g is of type 1^ν, g ∉ Z(G)}/ ≈ and ([g]_≈, [h]_≈) ∈ R ⇔ gh = hg, is a model of \$Th(Γ)\$
- The full set of transversals produces a cover of a nice graph
- A transversalX can be viewed as a cover of the nice graph given by elements of the type 1^ν in X, with the edge relation given by commutation(we may identify X^ν with the set of vertices in M(G) by mapping x ∈ X^ν with 4[x]_≈\$)

Lemma

For saturated $G \models Th(G(\Gamma))$ and X a transversal of G, there is a subgroup $K_X \leq Z(G)$ such that $G = \langle X \rangle \times K_X$. Letting Y, Z be two small subsets of X and $\overline{h}_1, \overline{h}_2$ be tuples in K_X , then if

- there is a bijection $f : Y \to Z$ respecting the 1^{ν} , p, 1^{ι} parts, the handles, and $tp_M(Y^{\nu}) = tp_M(f(Y^{\nu}))$;
- $tp_{K_X}(\bar{h}_1) = tp_{K_X}(\bar{h}_2)$

Then there is an automorphism of G coinciding with f on Y sending \bar{h}_1 to \bar{h}_2

Lemma

For saturated $G \models Th(G(\Gamma))$ and X a transversal of G, there is a subgroup $K_X \leq Z(G)$ such that $G = \langle X \rangle \times K_X$. Letting Y, Z be two small subsets of X and $\overline{h}_1, \overline{h}_2$ be tuples in K_X , then if

• there is a bijection $f : Y \to Z$ respecting the 1^{ν} , p, 1^{ι} parts, the handles, and $tp_M(Y^{\nu}) = tp_M(f(Y^{\nu}))$;

•
$$tp_{\mathcal{K}_X}(\bar{h}_1) = tp_{\mathcal{K}_X}(\bar{h}_2)$$

Then there is an automorphism of G coinciding with f on Y sending \bar{h}_1 to \bar{h}_2

Lemma

For G and X above, we have $G' = \langle X \rangle'$. i.e. The choice of a transversal and an elementary abelian subgroup of the center in the decomposition of G can be made independently.

Alexander Berenbeim

Proposition

For $G \models Th(G(\Gamma))$, $G \models \pi(\bar{a}, \bar{b})$ if and only if we can extend \bar{a} to a transversal X of G and find $H \subset Z(G)$ containing \bar{b} linearly indepdent over G' so that $G = \langle X \rangle \times \langle H \rangle$.

A formula $\phi(x; y_1, \ldots, y_k)$ has the k-independence property with respect to T if in some model there is a sequence $(\bar{a}_{\beta)_{i\in\omega}}$ such that for every $s \subset \omega^k$, there is b_s such that

$$=\phi(b_s; \bar{a}_I) \iff I \in s$$

A formula $\phi(x; y_1, \ldots, y_k)$ has the k-independence property with respect to T if in some model there is a sequence $(\bar{a}_{\beta)_{i\in\omega}}$ such that for every $s \subset \omega^k$, there is b_s such that

$$=\phi(b_s; \bar{a}_I) \iff I \in s$$

If not, then $\phi(x; \bar{y})$ is k-dependent.

A formula $\phi(x; y_1, \ldots, y_k)$ has the k-independence property with respect to T if in some model there is a sequence $(\bar{a}_{\beta)_{i\in\omega}}$ such that for every $s \subset \omega^k$, there is b_s such that

$$=\phi(b_s; \bar{a}_I) \iff I \in s$$

If not, then $\phi(x; \bar{y})$ is k-dependent. T is k-dependent if it implies every formula is k-dependent

A formula $\phi(x; y_1, \ldots, y_k)$ has the k-independence property with respect to T if in some model there is a sequence $(\bar{a}_{\beta)_{i\in\omega}}$ such that for every $s \subset \omega^k$, there is b_s such that

$$=\phi(b_s; \bar{a}_I) \iff I \in s$$

If not, then $\phi(x; \bar{y})$ is k-dependent. T is k-dependent if it implies every formula is k-dependent T is strictly k-dependent if it is k-dependent but not (k-1)-independent.

Fix $L_{opg}^k = \{R(\bar{x}), <, P_0(x), \dots, P_{k-1}(x)\}$. An ordered k-partite hypergraph is an L_{opg}^k structure A such that:

Alexander Berenbeim

Fix $L_{opg}^{k} = \{R(\bar{x}), <, P_{0}(x), \dots, P_{k-1}(x)\}$. An ordered k-partite hypergraph is an L_{opg}^{k} structure \mathcal{A} such that: **a** $A = P_{0}^{\mathcal{A}} \sqcup \cdots \sqcup P_{k-1}^{\mathcal{A}}$

Mekler Constructions and Preservation of

Fix $L_{opg}^{k} = \{R(\bar{x}), <, P_{0}(x), \dots, P_{k-1}(x)\}$. An ordered k-partite hypergraph is an L_{opg}^{k} structure \mathcal{A} such that: **1** $A = P_{0}^{\mathcal{A}} \sqcup \cdots \sqcup P_{k-1}^{\mathcal{A}}$

② R^{A} is a symmetric relations such that if $\bar{a}^{R,A}$, then $P_i \cap \{a_0, ..., a_{k-1}\}$ is a singleton for each i < k

Fix $L_{opg}^{k} = \{R(\bar{x}), <, P_{0}(x), \dots, P_{k-1}(x)\}$. An ordered k-partite hypergraph is an L_{opg}^{k} structure A such that: **1** $A = P_{0}^{A} \sqcup \cdots \sqcup P_{k-1}^{A}$ **2** R^{A} is a symmetric relations such that if \bar{a}^{RA} , then $P_{i} \cap \{a_{0}, \dots, a_{k-1}\}$ is a singleton for each i < k**3** $<^{A}$ is a linear ordering on A with $P_{0}(A) < P_{1}(A) < \cdots < P_{k-1}(A)$

Fix $L_{opg}^{k} = \{R(\bar{x}), <, P_{0}(x), \dots, P_{k-1}(x)\}$. An ordered k-partite hypergraph is an L_{opg}^{k} structure A such that: **1** $A = P_{0}^{A} \sqcup \cdots \sqcup P_{k-1}^{A}$ **2** R^{A} is a symmetric relations such that if \bar{a}^{RA} , then $P_{i} \cap \{a_{0}, \dots, a_{k-1}\}$ is a singleton for each i < k**3** $<^{A}$ is a linear ordering on A with $P_{0}(A) < P_{1}(A) < \cdots < P_{k-1}(A)$

With \mathcal{K} the Fraissé class of all finite ordered k-partite graphs, the limit of \mathcal{K} is the ordered k-partite hypergraph, which will be denoted $G_{k,p}$.

With \mathcal{K} the Fraïssé class of all finite ordered k-partite graphs, the limit of \mathcal{K} is the ordered k-partite hypergraph, which will be denoted $G_{k,p}$. An ordered k-partite hypergraph $\mathcal{A} \models Th(G_{k,p})$ if and only if:

- $(P_i(A), <) \models \mathsf{DLO} \text{ for all } i < k;$
- ∀j < k, any finite disjoint A₀, A₁ ⊂_{i<k,i≠j} P_i(A), and b₀, b₁ ∈ P_j(A), there is b₀ < b < b₁ such that R(b,ā) for all ā ∈ A₀ and ¬R(b,ā) for every ā ∈ A₁.

With \mathcal{K} the Fraïssé class of all finite ordered k-partite graphs, the limit of \mathcal{K} is the ordered k-partite hypergraph, which will be denoted $G_{k,p}$. An ordered k-partite hypergraph $\mathcal{A} \models Th(G_{k,p})$ if and only if:

•
$$(P_i(A), <) \models \mathsf{DLO} \text{ for all } i < k;$$

∀j < k, any finite disjoint A₀, A₁ ⊂_{i<k,i≠j} P_i(A), and b₀, b₁ ∈ P_j(A), there is b₀ < b < b₁ such that R(b,ā) for all ā ∈ A₀ and ¬R(b,ā) for every ā ∈ A₁.

Let $O_{k,p}$ denote the reduct of $G_{k,p}$ to the language $L_{op}^{k} = \{<, P_{0}, \dots, P_{k-1}\}$

Let T be a theory in L and \mathbb{M} be the monster of T.

Alexander Berenbeim

Mekler Constructions and Preservation of

4 円

Let T be a theory in L and \mathbb{M} be the monster of T.

• Let I be an L_0 structure. Then $\vec{a} = (a_i)_{i \in I}$ with a_i tuples in \mathbb{M} , is *I-indiscernible* over C if for all $n \in \omega$ and $\mathfrak{s} \in I$, we have

$$qftp_{L_0}(\bar{i}) = qftp_{L_0}(\bar{j}) \Rightarrow tp_L(a_{\bar{i}/C}) = tp_L(a_{\bar{i}/C})$$

Let T be a theory in L and \mathbb{M} be the monster of T.

• Let I be an L_0 structure. Then $\vec{a} = (a_i)_{i \in I}$ with a_i tuples in \mathbb{M} , is *I-indiscernible* over C if for all $n \in \omega$ and $\mathfrak{s} \in I$, we have

$$qftp_{L_0}(\overline{i}) = qftp_{L_0}(\overline{j}) \Rightarrow tp_L(a_{\overline{i}/C}) = tp_L(a_{\overline{i}/C})$$

For L₀ structures I, J, (b_j)_{j∈J} is based on a over a set of parameters in C if for any finite set Δ of L(C) formulas, and any finite tuple j ∈ J, there is a tuple i ∈ I such that:

Let T be a theory in L and \mathbb{M} be the monster of T.

• Let I be an L_0 structure. Then $\vec{a} = (a_i)_{i \in I}$ with a_i tuples in \mathbb{M} , is *I-indiscernible* over C if for all $n \in \omega$ and $\mathfrak{s} \in I$, we have

$$qftp_{L_0}(\overline{i}) = qftp_{L_0}(\overline{j}) \Rightarrow tp_L(a_{\overline{i}/C}) = tp_L(a_{\overline{i}/C})$$

• For L_0 structures $I, J, (b_j)_{j \in J}$ is based on \vec{a} over a set of parameters in C if for any finite set Δ of L(C) formulas, and any finite tuple $\overline{j} \in J$, there is a tuple $\overline{i} \in I$ such that:

• $qftp_{L_0}(\overline{j}) = qftp_{L_0}(\overline{i})$ • $tp_{\Delta}(b_{\overline{i}}) = tp_{\Delta}(a_{\overline{i}})$

We have the following facts for finding $G_{k,p}$ indiscernibles using structural Ramsey theory:

We have the following facts for finding $G_{k,p}$ indiscernibles using structural Ramsey theory:

• For any $\bar{a} = (a_g)_{g \in O_{k,p}}$, there is $(b_g)_{g \in O_{k,p}}$ which is $O_{k,p}$ indiscernible / C and based on \bar{a} /C

We have the following facts for finding $G_{k,p}$ indiscernibles using structural Ramsey theory:

- For any $\bar{a} = (a_g)_{g \in O_{k,p}}$, there is $(b_g)_{g \in O_{k,p}}$ which is $O_{k,p}$ indiscernible / C and based on \bar{a} /C
- For any $\bar{a} = (a_g)_{g \in G_{k,p}}$, there is $(b_g)_{g \in G_{k,p}}$ which is $G_{k,p}$ indiscernible/ C and based on \bar{a}/C

We have the following facts for finding $G_{k,p}$ indiscernibles using structural Ramsey theory:

- For any $\bar{a} = (a_g)_{g \in O_{k,p}}$, there is $(b_g)_{g \in O_{k,p}}$ which is $O_{k,p}$ indiscernible / C and based on \bar{a} /C
- For any $\bar{a} = (a_g)_{g \in G_{k,p}}$, there is $(b_g)_{g \in G_{k,p}}$ which is $G_{k,p}$ indiscernible/ C and based on \bar{a}/C
- For T complete and $\mathbb{M}\models T$, and any $k\in\omega$, TFAE
- T is k-dependent
- **②** For any $\bar{a} = (a_g)_{g \in G_{k,p}}$, and b with a_g , b finite tuples in the monster, if \bar{a} is $G_{k,p}$ indiscernible over b, and $O_{k,p}$ indiscernible over Ø, then it is $O_{k,p}$ indiscernible over b

Key Facts

We have the following facts for finding $G_{k,p}$ indiscernibles using structural Ramsey theory:

- For any $\bar{a} = (a_g)_{g \in O_{k,p}}$, there is $(b_g)_{g \in O_{k,p}}$ which is $O_{k,p}$ indiscernible / C and based on \bar{a} /C
- For any $\bar{a} = (a_g)_{g \in G_{k,p}}$, there is $(b_g)_{g \in G_{k,p}}$ which is $G_{k,p}$ indiscernible/ C and based on \bar{a}/C
- For T complete and $\mathbb{M}\models T$, and any $k\in\omega$, TFAE
- T is k-dependent
- **②** For any $\bar{a} = (a_g)_{g \in G_{k,p}}$, and b with a_g , b finite tuples in the monster, if \bar{a} is $G_{k,p}$ indiscernible over b, and $O_{k,p}$ indiscernible over Ø, then it is $O_{k,p}$ indiscernible over b
 - Since nice Γ is interpretable in $G(\Gamma)$, if $Th(G(\Gamma))$ is k-dependent, then $Th(\Gamma)$ is k-dependent.

• We wish to show that for all $k \in \mathbb{N}$, and nice Γ , $Th(\Gamma)$ k-dependent implies that Th(G(C)) is k-dependent.

2019-04-17 20 / 26

- We wish to show that for all $k \in \mathbb{N}$, and nice Γ , $Th(\Gamma)$ k-dependent implies that Th(G(C)) is k-dependent.
- Let G ⊨ Th(G(Γ)) be saturated, X a transversal, H a set in Z(G) linearly independent over G' such that G = ⟨X⟩ × ⟨H⟩ and fix κ = ℵ₀⁺

- We wish to show that for all $k \in \mathbb{N}$, and nice Γ , $Th(\Gamma)$ k-dependent implies that Th(G(C)) is k-dependent.
- Let G ⊨ Th(G(Γ)) be saturated, X a transversal, H a set in Z(G) linearly independent over G' such that G = ⟨X⟩ × ⟨H⟩ and fix κ = ℵ₀⁺
- We'll suppose towards a contradiction that Th(Γ) is k-dependent but Th(G(Γ)) has k-IP witnessed by the formula φ(x; ȳ) ∈ L_G.

- We wish to show that for all $k \in \mathbb{N}$, and nice Γ , $Th(\Gamma)$ k-dependent implies that Th(G(C)) is k-dependent.
- Let G ⊨ Th(G(Γ)) be saturated, X a transversal, H a set in Z(G) linearly independent over G' such that G = ⟨X⟩ × ⟨H⟩ and fix κ = ℵ₀⁺
- We'll suppose towards a contradiction that $Th(\Gamma)$ is k-dependent but $Th(G(\Gamma))$ has k-IP witnessed by the formula $\varphi(x; \bar{y}) \in L_G$.
- By compactness, there is a sequence $(\bar{a}_{\alpha})_{\alpha \in \kappa}$ such that for any $s \subseteq \kappa^k$, there is some b_s such that

$$\models \phi(b_s; \bar{a}_{\alpha_I}) \iff \alpha_I \in s$$

- We wish to show that for all $k \in \mathbb{N}$, and nice Γ , $Th(\Gamma)$ k-dependent implies that Th(G(C)) is k-dependent.
- Let G ⊨ Th(G(Γ)) be saturated, X a transversal, H a set in Z(G) linearly independent over G' such that G = ⟨X⟩ × ⟨H⟩ and fix κ = ℵ₀⁺
- We'll suppose towards a contradiction that $Th(\Gamma)$ is k-dependent but $Th(G(\Gamma))$ has k-IP witnessed by the formula $\varphi(x; \bar{y}) \in L_G$.
- By compactness, there is a sequence $(\bar{a}_{\alpha})_{\alpha \in \kappa}$ such that for any $s \subseteq \kappa^k$, there is some b_s such that

$$\models \phi(b_s; \bar{a}_{\alpha_I}) \iff \alpha_I \in s$$

• By the choice of X, H, for each $i < k, \alpha \in \kappa$, there is some term $t_{i,\alpha} \in L_G$ and finite tuples $\bar{x}_{i,\alpha} \in X$, $\bar{h}_{i,\alpha} \in H$ such that $a_{i,\alpha} = t_{i,\alpha}(\bar{x}_{i,\alpha}, \bar{h}_{i,\alpha})$.

• Since $\kappa > |L_G| + \aleph_0$, we pass to a subsequence of length κ for each i < k, so that we may assume $t_{i,\alpha} = t_i$ and $\bar{x}_{i,\alpha} = \bar{x}_{i,\alpha}^{\nu} \frown \bar{x}_{i,\alpha}^{\iota}$.

2019-04-17 21/26

- Since $\kappa > |L_G| + \aleph_0$, we pass to a subsequence of length κ for each i < k, so that we may assume $t_{i,\alpha} = t_i$ and $\bar{x}_{i,\alpha} = \bar{x}_{i,\alpha}^{\nu} \frown \bar{x}_{i,\alpha}^{\rho}$.
- We then add handles of the elements in $\bar{x}_{i,\alpha}^p$ to the beginning of $\bar{x}_{i,\alpha}^{\nu}$

- Since $\kappa > |L_G| + \aleph_0$, we pass to a subsequence of length κ for each i < k, so that we may assume $t_{i,\alpha} = t_i$ and $\bar{x}_{i,\alpha} = \bar{x}_{i,\alpha}^{\nu} \frown \bar{x}_{i,\alpha}^{\ell}$.
- We then add handles of the elements in $\bar{x}_{i,\alpha}^{p}$ to the beginning of $\bar{x}_{i,\alpha}^{\nu}$
- We shatter $\langle \bar{x}_{0,\alpha} \bar{h}_{0,\alpha}, \dots, \bar{x}_{k-1,\alpha} \bar{h}_{k-1,\alpha} | \alpha \in \kappa \rangle$ by $\psi(x; \bar{y}') := \phi(x; t_0(y'_0), \dots, t_{k-1}(y'_{k-1}))$

- Since $\kappa > |L_G| + \aleph_0$, we pass to a subsequence of length κ for each i < k, so that we may assume $t_{i,\alpha} = t_i$ and $\bar{x}_{i,\alpha} = \bar{x}_{i,\alpha}^{\nu} \frown \bar{x}_{i,\alpha}^{\ell}$.
- We then add handles of the elements in $\bar{x}_{i,\alpha}^{p}$ to the beginning of $\bar{x}_{i,\alpha}^{\nu}$
- We shatter $\langle \bar{x}_{0,\alpha} \bar{h}_{0,\alpha}, \dots, \bar{x}_{k-1,\alpha} \bar{h}_{k-1,\alpha} | \alpha \in \kappa \rangle$ by $\psi(x; \bar{y}') := \phi(x; t_0(y'_0), \dots, t_{k-1}(y'_{k-1}))$
- This can be done since for each $A \subseteq \kappa^k$, there is \overline{b} such that $G \models \psi(\overline{b}, \overline{(\overline{x} \frown \overline{h})}_I)$ if and only if $I \in A$

- Since $\kappa > |L_G| + \aleph_0$, we pass to a subsequence of length κ for each i < k, so that we may assume $t_{i,\alpha} = t_i$ and $\bar{x}_{i,\alpha} = \bar{x}_{i,\alpha}^{\nu} \frown \bar{x}_{i,\alpha}^{\iota}$.
- We then add handles of the elements in $\bar{x}_{i,\alpha}^{p}$ to the beginning of $\bar{x}_{i,\alpha}^{\nu}$
- We shatter $\langle \bar{x}_{0,\alpha} \bar{h}_{0,\alpha}, \dots, \bar{x}_{k-1,\alpha} \bar{h}_{k-1,\alpha} | \alpha \in \kappa \rangle$ by $\psi(x; \bar{y}') := \phi(x; t_0(y'_0), \dots, t_{k-1}(y'_{k-1}))$
- This can be done since for each $A \subseteq \kappa^k$, there is \overline{b} such that $G \models \psi(\overline{b}, (\overline{x} \frown \overline{h})_I)$ if and only if $I \in A$
- We then define L_{op} structure on κ interpreting each P_i as a countable disjoint subset of κ , choosing an ordering isomorphic to $(\mathbb{Q}, <)$ for each P_i .

- Since $\kappa > |L_G| + \aleph_0$, we pass to a subsequence of length κ for each i < k, so that we may assume $t_{i,\alpha} = t_i$ and $\bar{x}_{i,\alpha} = \bar{x}_{i,\alpha}^{\nu} \frown \bar{x}_{i,\alpha}^{\iota}$.
- We then add handles of the elements in $\bar{x}_{i,\alpha}^{p}$ to the beginning of $\bar{x}_{i,\alpha}^{\nu}$
- We shatter $\langle \bar{x}_{0,\alpha} \bar{h}_{0,\alpha}, \dots, \bar{x}_{k-1,\alpha} \bar{h}_{k-1,\alpha} | \alpha \in \kappa \rangle$ by $\psi(x; \bar{y}') := \phi(x; t_0(y'_0), \dots, t_{k-1}(y'_{k-1}))$
- This can be done since for each $A \subseteq \kappa^k$, there is \overline{b} such that $G \models \psi(\overline{b}, (\overline{x} \frown \overline{h})_I)$ if and only if $I \in A$
- We then define L_{op} structure on κ interpreting each P_i as a countable disjoint subset of κ, choosing an ordering isomorphic to (Q, <) for each P_i.
- Then for each i, we take each $\langle \bar{x}_{i,\alpha} \bar{h}_{i,\alpha} | \alpha \in \kappa \rangle$ sequence and obtain $\langle \bar{x}_{g} \bar{h}_{g} | g \in O_{k,p} \rangle$ indexed by $O_{k,p}$

- Since $\kappa > |L_G| + \aleph_0$, we pass to a subsequence of length κ for each i < k, so that we may assume $t_{i,\alpha} = t_i$ and $\bar{x}_{i,\alpha} = \bar{x}_{i,\alpha}^{\nu} \frown \bar{x}_{i,\alpha}^{\iota}$.
- We then add handles of the elements in $\bar{x}_{i,\alpha}^{p}$ to the beginning of $\bar{x}_{i,\alpha}^{\nu}$
- We shatter $\langle \bar{x}_{0,\alpha} \bar{h}_{0,\alpha}, \dots, \bar{x}_{k-1,\alpha} \bar{h}_{k-1,\alpha} | \alpha \in \kappa \rangle$ by $\psi(x; \bar{y}') := \phi(x; t_0(y'_0), \dots, t_{k-1}(y'_{k-1}))$
- This can be done since for each $A \subseteq \kappa^k$, there is \overline{b} such that $G \models \psi(\overline{b}, (\overline{x} \frown \overline{h})_I)$ if and only if $I \in A$
- We then define L_{op} structure on κ interpreting each P_i as a countable disjoint subset of κ , choosing an ordering isomorphic to $(\mathbb{Q}, <)$ for each P_i .
- Then for each i, we take each $\langle \bar{x}_{i,\alpha} \bar{h}_{i,\alpha} \mid \alpha \in \kappa \rangle$ sequence and obtain $\langle \bar{x}_{g} \bar{h}_{g} \mid g \in O_{k,p} \rangle$ indexed by $O_{k,p}$
- This sequence shatters since for each $A \subset P_0 \times \cdots \times P_{k-1}$, there is $\overline{b} \in G$ such that $G \models \psi(\overline{b}; \overline{(\overline{x} \frown \overline{h})}_{\overline{g}}) \iff \overline{g} \in A$

• By our structural Ramsey theory facts, we let $\langle \bar{y}_{g} \ \bar{m}_{g} | g \in O_{k,p} \rangle$ be $O_{k,p}$ indiscerible in G based on $\langle \bar{x}_{g} \ \bar{h}_{g} | g \in O_{k,p} \rangle$.

2019-04-17 22 / 26

- By our structural Ramsey theory facts, we let $\langle \bar{y}_{g}^{\frown} \bar{m}_{g} | g \in O_{k,p} \rangle$ be $O_{k,p}$ indiscerible in G based on $\langle \bar{x}_{g}^{\frown} \bar{h}_{g} | g \in O_{k,p} \rangle$.
- By the final transversal proposition we have:

- By our structural Ramsey theory facts, we let $\langle \bar{y}_{g}^{\frown} \bar{m}_{g} | g \in O_{k,p} \rangle$ be $O_{k,p}$ indiscerible in G based on $\langle \bar{x}_{g}^{\frown} \bar{h}_{g} | g \in O_{k,p} \rangle$.
- By the final transversal proposition we have:
- **(** $ar{y}_g \frown ar{m}_g \mid g \in O_{k,p}$) is shattered by ψ

- By our structural Ramsey theory facts, we let $\langle \bar{y}_{g} \ \bar{m}_{g} | g \in O_{k,p} \rangle$ be $O_{k,p}$ indiscerible in G based on $\langle \bar{x}_{g} \ \bar{h}_{g} | g \in O_{k,p} \rangle$.
- By the final transversal proposition we have:
- $(\bar{y}_g \frown \bar{m}_g \mid g \in O_{k,p})$ is shattered by ψ
- 2 the handle of each jth element in the tuple \bar{y}_g^p is the jth element of \bar{y}_g^{ν}

- By our structural Ramsey theory facts, we let $\langle \bar{y}_{g} \ \bar{m}_{g} | g \in O_{k,p} \rangle$ be $O_{k,p}$ indiscerible in G based on $\langle \bar{x}_{g} \ \bar{h}_{g} | g \in O_{k,p} \rangle$.
- By the final transversal proposition we have:
- $\ \, {\bf 0} \ \, \left(\bar{y}_g\frown \bar{m}_g\mid g\in O_{k,p}\right) \text{ is shattered by }\psi$
- **2** the handle of each jth element in the tuple \bar{y}_g^p is the jth element of \bar{y}_g^{ν}
- Solution 3 the set of all elements of G appearing in $\langle \bar{y}_g | g \in O_{k,p} \rangle$ is a partial transversal, hence it can be extended to a transversal Y of G

- By our structural Ramsey theory facts, we let $\langle \bar{y}_{g} \ \bar{m}_{g} | g \in O_{k,p} \rangle$ be $O_{k,p}$ indiscerible in G based on $\langle \bar{x}_{g} \ \bar{h}_{g} | g \in O_{k,p} \rangle$.
- By the final transversal proposition we have:
- $\bullet \ (\bar{y}_g\frown \bar{m}_g \mid g\in O_{k,p}) \text{ is shattered by } \psi$
- **2** the handle of each jth element in the tuple \bar{y}_g^p is the jth element of \bar{y}_g^{ν}
- Solution 3 the set of all elements of G appearing in $\langle \bar{y}_g | g \in O_{k,p} \rangle$ is a partial transversal, hence it can be extended to a transversal Y of G

- By our structural Ramsey theory facts, we let $\langle \bar{y}_{g} \ \bar{m}_{g} | g \in O_{k,p} \rangle$ be $O_{k,p}$ indiscerible in G based on $\langle \bar{x}_{g} \ \bar{h}_{g} | g \in O_{k,p} \rangle$.
- By the final transversal proposition we have:
- $\ \, {\bf 0} \ \, (\bar{y}_g\frown \bar{m}_g\mid g\in O_{k,p}) \ \, {\rm is \ shattered \ \, by } \ \, \psi$
- **2** the handle of each jth element in the tuple \bar{y}_g^p is the jth element of \bar{y}_g^{ν}
- Solution 3 the set of all elements of G appearing in $\langle \bar{y}_g | g \in O_{k,p} \rangle$ is a partial transversal, hence it can be extended to a transversal Y of G
- the set of all elements in G appearing in ⟨m
 g | g ∈ O{k,p}⟩ is a set of elements in Z(G) linearly independent over G', and thus can be extended to a linearly independent set M such that G = ⟨Y⟩ × ⟨M⟩
 - We now expand $O_{k,p}$ to $G_{k,p}$. Since ψ shatters $\langle \bar{y}_g \frown \bar{m}_g \rangle$, we can find $b \in G$ such that

$$G \models \psi(b; \overline{(\bar{y} \frown \bar{m})_{\bar{g}}}) \iff G_{k,p} \models R(\bar{g}), \forall g_i \in P_i$$

▲/□ ▶ ▲ 三 ▶ ▲ 三

• We write $b = s(\bar{z}, I)$ for some term $s \in L_G$, and some tuple $\bar{z} = \bar{z}^{\nu \frown} \bar{z}^{\rho} \frown \bar{z}^{\iota} \in Y$, and $\bar{I} \in M$, extending \bar{z}^{ν} if necessary so that \bar{z} is closed under handles.

- We write $b = s(\bar{z}, I)$ for some term $s \in L_G$, and some tuple $\bar{z} = \bar{z}^{\nu \frown} \bar{z}^{\rho} \frown \bar{z}^{\iota} \in Y$, and $\bar{I} \in M$, extending \bar{z}^{ν} if necessary so that \bar{z} is closed under handles.
- We now set $\theta(x^{\prime}; \gamma) := \psi(s(x^{\prime}); \gamma)$

- We write $b = s(\bar{z}, I)$ for some term $s \in L_G$, and some tuple $\bar{z} = \bar{z}^{\nu \frown} \bar{z}^{\rho} \frown \bar{z}^{\iota} \in Y$, and $\bar{I} \in M$, extending \bar{z}^{ν} if necessary so that \bar{z} is closed under handles.
- We now set $\theta(x^{\prime}; \gamma) := \psi(s(x^{\prime}); \gamma)$

•
$$G \models \theta(\bar{z}^{\frown}\bar{l}; \overline{(\bar{y}^{\frown}\bar{m})_{\bar{g}}}) \iff G_{k,p} \models R(\bar{g}), \forall g_i \in P_i$$

- We write $b = s(\bar{z}, I)$ for some term $s \in L_G$, and some tuple $\bar{z} = \bar{z}^{\nu \frown} \bar{z}^{\rho} \frown \bar{z}^{\iota} \in Y$, and $\bar{I} \in M$, extending \bar{z}^{ν} if necessary so that \bar{z} is closed under handles.
- We now set $\theta(x^{\prime}; t^{\prime}) := \psi(s(x^{\prime}); t^{\prime})$
- $G \models \theta(\bar{z} \frown \bar{l}; (\bar{y} \frown \bar{m})_{\bar{g}}) \iff G_{k,p} \models R(\bar{g}), \forall g_i \in P_i$
- By structural Ramsey fact, we can find an $G_{k,p}$ indiscernible sequence $\langle \bar{z}_g \frown \bar{l}_g \mid g \in G_{k,p} \rangle$ over $\bar{z} \frown \bar{l}$ and based on $\langle \bar{y}_g \frown \bar{m}_g \mid g \in G_{k,p} \rangle$ over $\$ \frown \$$

- We write $b = s(\bar{z}, I)$ for some term $s \in L_G$, and some tuple $\bar{z} = \bar{z}^{\nu \frown} \bar{z}^{\rho} \frown \bar{z}^{\iota} \in Y$, and $\bar{I} \in M$, extending \bar{z}^{ν} if necessary so that \bar{z} is closed under handles.
- We now set $\theta(x^{\prime}; \gamma) := \psi(s(x^{\prime}); \gamma)$

•
$$G \models \theta(\bar{z}^{\frown}\bar{l}; \overline{(\bar{y}^{\frown}\bar{m})_{\bar{g}}}) \iff G_{k,p} \models R(\bar{g}), \forall g_i \in P_i$$

- By structural Ramsey fact, we can find an $G_{k,p}$ indiscernible sequence $\langle \bar{z}_g \frown \bar{l}_g \mid g \in G_{k,p} \rangle$ over $\bar{z} \frown \bar{l}$ and based on $\langle \bar{y}_g \frown \bar{m}_g \mid g \in G_{k,p} \rangle$ over $\$ \frown \$$
- Among the consequences is that the set of all elements of G appearing \overline{I} and $\langle \overline{I} | g \in G_{k,p} \rangle$ remains a subset of Z(G) that is linearly independent over G', and hence can be extended to a linearly independent set L such that $G = \langle Z \rangle \times \langle L \rangle$.

- We write $b = s(\bar{z}, I)$ for some term $s \in L_G$, and some tuple $\bar{z} = \bar{z}^{\nu \frown} \bar{z}^{\rho} \frown \bar{z}^{\iota} \in Y$, and $\bar{I} \in M$, extending \bar{z}^{ν} if necessary so that \bar{z} is closed under handles.
- We now set $\theta(x^{\prime}; \gamma):=\psi(s(x^{\prime}); \gamma)$

•
$$G \models \theta(\bar{z}^{\frown}\bar{l}; \overline{(\bar{y}^{\frown}\bar{m})_{\bar{g}}}) \iff G_{k,p} \models R(\bar{g}), \forall g_i \in P_i$$

- By structural Ramsey fact, we can find an $G_{k,p}$ indiscernible sequence $\langle \bar{z}_g \frown \bar{l}_g \mid g \in G_{k,p} \rangle$ over $\bar{z} \frown \bar{l}$ and based on $\langle \bar{y}_g \frown \bar{m}_g \mid g \in G_{k,p} \rangle$ over $\$ \frown \$$
- Among the consequences is that the set of all elements of G appearing *I* and ⟨*I* | g ∈ G_{k,p}⟩ remains a subset of Z(G) that is linearly independent over G', and hence can be extended to a linearly independent set L such that G = ⟨Z⟩ × ⟨L⟩. Additionally, the G_{k,p} indiscernible sequence is O_{k,p} indiscernible over Ø.

• Since $Th(\Gamma)$ is k-dependent, it follows that $\langle \bar{z}_g^{\nu} | g \in G_{k,p} \rangle$ is $G_{k,p}$ indiscernible over \bar{z}^{ν} and $O_{k,p}$ indiscernible over \emptyset in M(G)

2019-04-17 24 / 26

- Since $Th(\Gamma)$ is k-dependent, it follows that $\langle \bar{z}_g^{\nu} | g \in G_{k,p} \rangle$ is $G_{k,p}$ indiscernible over \bar{z}^{ν} and $O_{k,p}$ indiscernible over \emptyset in M(G)
- Thus for all $\bar{g}, \bar{q} \in G_{k,p}$ such that $tp_{L_{op}^{k}}(\bar{g}) = tp_{L_{op}^{k}}(\bar{q})$, we have $tp_{\mathcal{M}}(\bar{z}_{\bar{g}}^{\nu}/\bar{z}^{\nu}) = tp_{\mathcal{M}}(\bar{z}_{\bar{q}}^{\nu}/\bar{z}^{\nu})$

- Since $Th(\Gamma)$ is k-dependent, it follows that $\langle \bar{z}_g^{\nu} | g \in G_{k,p} \rangle$ is $G_{k,p}$ indiscernible over \bar{z}^{ν} and $O_{k,p}$ indiscernible over \emptyset in M(G)
- Thus for all $\bar{g}, \bar{q} \in G_{k,p}$ such that $tp_{L_{op}^{k}}(\bar{g}) = tp_{L_{op}^{k}}(\bar{q})$, we have $tp_{\mathcal{M}}(\bar{z}_{\bar{g}}^{\nu}/\bar{z}^{\nu}) = tp_{\mathcal{M}}(\bar{z}_{\bar{q}}^{\nu}/\bar{z}^{\nu})$
- By $O_{k,p}$ indiscernibility, and finiteness of \overline{z} , there is $\lambda_i \subset P_i$ for each i < k such that for all $g \neq q \in P_i$, with $g, q > \lambda_i$, we have

$$ar{z}_g^{
ho}\capar{z}^{
ho}=ar{z}_q^{
ho}\capar{z}^{
ho}\wedgear{z}_g^{\iota}\capar{z}^{\iota}=ar{z}_q^{\iota}\capar{z}^{\iota}$$

with $\bar{z}_g \cap \bar{z}_q$ constant.

- Since $Th(\Gamma)$ is k-dependent, it follows that $\langle \bar{z}_g^{\nu} | g \in G_{k,p} \rangle$ is $G_{k,p}$ indiscernible over \bar{z}^{ν} and $O_{k,p}$ indiscernible over \emptyset in M(G)
- Thus for all $\bar{g}, \bar{q} \in G_{k,p}$ such that $tp_{L_{op}^{k}}(\bar{g}) = tp_{L_{op}^{k}}(\bar{q})$, we have $tp_{\mathcal{M}}(\bar{z}_{\bar{g}}^{\nu}/\bar{z}^{\nu}) = tp_{\mathcal{M}}(\bar{z}_{\bar{q}}^{\nu}/\bar{z}^{\nu})$
- By $O_{k,p}$ indiscernibility, and finiteness of \overline{z} , there is $\lambda_i \subset P_i$ for each i < k such that for all $g \neq q \in P_i$, with $g, q > \lambda_i$, we have

$$ar{z}^{p}_{g} \cap ar{z}^{p} = ar{z}^{p}_{q} \cap ar{z}^{p} \wedge ar{z}^{\iota}_{g} \cap ar{z}^{\iota} = ar{z}^{\iota}_{q} \cap ar{z}^{\iota}$$

with $\overline{z}_g \cap \overline{z}_q$ constant.

 For g_i, q_i > λ_i, we get a mapping of (z_{g̃}, z̄) → (z_{q̃}, z̄) which preserves the positions of elements in the tuples extends to a bijection σ_{g̃,q̃} such that:

• Considering all \overline{I} and $\langle \overline{I}_g | g \in G_{k,p} \rangle$ in $\langle L \rangle$ as a saturated moel of $Th(\langle L \rangle)$, by QE, we have that $\langle \overline{I}_g \rangle$ is both $O_{k,p}$ and $G_{k,p}$ indiscernible over \overline{I} in $\langle L \rangle$.

- Considering all \overline{I} and $\langle \overline{I}_g | g \in G_{k,p} \rangle$ in $\langle L \rangle$ as a saturated moel of $Th(\langle L \rangle)$, by QE, we have that $\langle \overline{I}_g \rangle$ is both $O_{k,p}$ and $G_{k,p}$ indiscernible over \overline{I} in $\langle L \rangle$.
- By stability, $\langle L\rangle$ is k-dependent, and so $\langle \bar{l}_g\rangle$ will be $O_{k,p}$ indiscernible over \bar{l}

- Considering all \overline{I} and $\langle \overline{I}_g | g \in G_{k,p} \rangle$ in $\langle L \rangle$ as a saturated moel of $Th(\langle L \rangle)$, by QE, we have that $\langle \overline{I}_g \rangle$ is both $O_{k,p}$ and $G_{k,p}$ indiscernible over \overline{I} in $\langle L \rangle$.
- By stability, $\langle L\rangle$ is k-dependent, and so $\langle \bar{l}_g\rangle$ will be $O_{k,p}$ indiscernible over \bar{l}
- For $\bar{g}, \bar{q} \in G_{k,p}$ such that $g_i, q_i > \lambda_i$ and $g_i, q_i \in P_i$, and $G_{k,p} \models R(\bar{g}) \land \neg R(\bar{q})$, by the choice of $\bar{z} \frown \bar{l}$,

$$G \models \theta(\bar{z}^{\frown}\bar{l}; \overline{(\bar{z}^{\frown}\bar{l})_{\bar{g}}}) \land \neg \theta(\bar{z}^{\frown}\bar{l}; \overline{(\bar{z}^{\frown}\bar{l})_{\bar{q}}})$$

- Considering all \overline{I} and $\langle \overline{I}_g | g \in G_{k,p} \rangle$ in $\langle L \rangle$ as a saturated moel of $Th(\langle L \rangle)$, by QE, we have that $\langle \overline{I}_g \rangle$ is both $O_{k,p}$ and $G_{k,p}$ indiscernible over \overline{I} in $\langle L \rangle$.
- By stability, $\langle L\rangle$ is k-dependent, and so $\langle \bar{l}_g\rangle$ will be $O_{k,p}$ indiscernible over \bar{l}
- For $\bar{g}, \bar{q} \in G_{k,p}$ such that $g_i, q_i > \lambda_i$ and $g_i, q_i \in P_i$, and $G_{k,p} \models R(\bar{g}) \land \neg R(\bar{q})$, by the choice of $\bar{z} \cap \bar{I}$,

$$G \models \theta(\bar{z}^{\frown}\bar{l}; \overline{(\bar{z}^{\frown}\bar{l})_{\bar{g}}}) \land \neg \theta(\bar{z}^{\frown}\bar{l}; \overline{(\bar{z}^{\frown}\bar{l})_{\bar{q}}})$$

• Since we have an automorphism sending \bar{g} to \bar{q} , we have a contradiction.

- Are there pseudofinite strictly k-dependent groups for k>2
- Are there \aleph_0 categorical strictly k-dependent groups for k>2
- Are there strictly k-dependent fields for $k \ge 2$