Introduction to the Surreal Numbers

Alexander Berenbeim

July 12, 2021

Alexander Berenbeim Introduction to the Surreal Numbers

< ∃ >

Quick Intro

• Surreal numbers can be inductively defined as *games LR* such that *L* < *R* (otherwise the game is fuzzy)

- Surreal numbers can be inductively defined as *games LR* such that *L* < *R* (otherwise the game is fuzzy)
- The surreal numbers are inductively defined as maps $a: \alpha \to 2\$

- Surreal numbers can be inductively defined as *games LR* such that *L* < *R* (otherwise the game is fuzzy)
- The surreal numbers are inductively defined as maps $a: \alpha \rightarrow 2$
- An order on a < b is inductively defined where a < b if $a(\alpha) < b(\alpha)$ for the least ordinal such that a and b disagree

- Surreal numbers can be inductively defined as *games LR* such that *L* < *R* (otherwise the game is fuzzy)
- The surreal numbers are inductively defined as maps $a: \alpha \to 2$
- An order on a < b is inductively defined where a < b if $a(\alpha) < b(\alpha)$ for the least ordinal such that a and b disagree
- For example, (+) < (+) < (+ +)

- Surreal numbers can be inductively defined as *games LR* such that *L* < *R* (otherwise the game is fuzzy)
- The surreal numbers are inductively defined as maps $a: \alpha \rightarrow 2$
- An order on a < b is inductively defined where a < b if $a(\alpha) < b(\alpha)$ for the least ordinal such that a and b disagree
- For example, (+) < (+) < (+ +)
- Fundamental Existence Theorem and Cofinality Theorems

- Surreal numbers can be inductively defined as *games LR* such that *L* < *R* (otherwise the game is fuzzy)
- The surreal numbers are inductively defined as maps $a: \alpha \to 2$
- An order on a < b is inductively defined where a < b if $a(\alpha) < b(\alpha)$ for the least ordinal such that a and b disagree
- For example, (+) < (+) < (+ +)
- Fundamental Existence Theorem and Cofinality Theorems
- Operations, Limits, and Gaps

Fundamental Existence Theorem

• Given *L* < *R*, there is a *c* of minimal length such that *L* < *c* < *R*, i.e. *c* is an initial segment of all \$L<d<R\$

- Given L < R, there is a c of minimal length such that L < c < R, i.e. c is an initial segment of all \$L<d<R\$
- It suffices to prove this wrt the initial segment property in 4 separate cases

- Given L < R, there is a c of minimal length such that L < c < R, i.e. c is an initial segment of all \$L<d<R\$
- It suffices to prove this wrt the initial segment property in 4 separate cases
- Case 1: $L = R = \emptyset$ then 0 works.

- Given L < R, there is a c of minimal length such that L < c < R, i.e. c is an initial segment of all \$L<d<R\$
- It suffices to prove this wrt the initial segment property in 4 separate cases
- Case 1: $L = R = \emptyset$ then 0 works.
- Case 2: L ≠ Ø and R = Ø. Take α to be the least ordinal such that ∀a ∈ L there is some β ∈ α such that a(β) = -, i.e. α ≠ 0.

- Given L < R, there is a c of minimal length such that L < c < R, i.e. c is an initial segment of all \$L<d<R\$
- It suffices to prove this wrt the initial segment property in 4 separate cases
- Case 1: $L = R = \emptyset$ then 0 works.
- Case 2: L ≠ Ø and R = Ø. Take α to be the least ordinal such that ∀a ∈ L there is some β ∈ α such that a(β) = -, i.e. α ≠ 0.Break into two subcases.

- Given L < R, there is a c of minimal length such that L < c < R, i.e. c is an initial segment of all \$L<d<R\$
- It suffices to prove this wrt the initial segment property in 4 separate cases
- Case 1: $L = R = \emptyset$ then 0 works.
- Case 2: L ≠ Ø and R = Ø. Take α to be the least ordinal such that ∀a ∈ L there is some β ∈ α such that a(β) = -, i.e. α ≠ 0.Break into two subcases.c = α sequence of plusses if α is a limit ordinal\$ and c = α + 1 otherwise.

- Given L < R, there is a c of minimal length such that L < c < R, i.e. c is an initial segment of all \$L<d<R\$
- It suffices to prove this wrt the initial segment property in 4 separate cases
- Case 1: $L = R = \emptyset$ then 0 works.
- Case 2: L ≠ Ø and R = Ø. Take α to be the least ordinal such that ∀a ∈ L there is some β ∈ α such that a(β) = -, i.e. α ≠ 0.Break into two subcases.c = α sequence of plusses if α is a limit ordinal\$ and c = α + 1 otherwise.
- Case 3: symmetric to Case 2

- Given L < R, there is a c of minimal length such that L < c < R, i.e. c is an initial segment of all \$L<d<R\$
- It suffices to prove this wrt the initial segment property in 4 separate cases
- Case 1: $L = R = \emptyset$ then 0 works.
- Case 2: L ≠ Ø and R = Ø. Take α to be the least ordinal such that ∀a ∈ L there is some β ∈ α such that a(β) = -, i.e. α ≠ 0.Break into two subcases.c = α sequence of plusses if α is a limit ordinal\$ and c = α + 1 otherwise.
- Case 3: symmetric to Case 2
- Case 4: $L, R \neq \emptyset$. Take α as before. Break into two cases

FET Case 4 Subcase 1

• If α is a limit ordinal, we find that for each $\gamma \in \alpha$ that there are some *a*, *b* agreeing for all $\beta \in \gamma + 1$.

- If α is a limit ordinal, we find that for each $\gamma \in \alpha$ that there are some *a*, *b* agreeing for all $\beta \in \gamma + 1$.
- We find that a(β) = b(β) = d(β) for all β ∈ γ + 1 ∈ α. If d is not an initial segment of any a ∈ L or b ∈ G by hypothesis so that a < d < b, and d works.

- If α is a limit ordinal, we find that for each $\gamma \in \alpha$ that there are some *a*, *b* agreeing for all $\beta \in \gamma + 1$.
- We find that a(β) = b(β) = d(β) for all β ∈ γ + 1 ∈ α. If d is not an initial segment of any a ∈ L or b ∈ G by hypothesis so that a < d < b, and d works.
- Otherwise if some a ∈ L has d as an initial segment, then R does not have such elements.

- If α is a limit ordinal, we find that for each $\gamma \in \alpha$ that there are some *a*, *b* agreeing for all $\beta \in \gamma + 1$.
- We find that a(β) = b(β) = d(β) for all β ∈ γ + 1 ∈ α. If d is not an initial segment of any a ∈ L or b ∈ G by hypothesis so that a < d < b, and d works.
- Otherwise if some a ∈ L has d as an initial segment, then R does not have such elements.Let L_d be the set of tails wrt d in L, and then apply case 2 to find d'.

- If α is a limit ordinal, we find that for each γ ∈ α that there are some a, b agreeing for all β ∈ γ + 1.
- We find that a(β) = b(β) = d(β) for all β ∈ γ + 1 ∈ α. If d is not an initial segment of any a ∈ L or b ∈ G by hypothesis so that a < d < b, and d works.
- Otherwise if some a ∈ L has d as an initial segment, then R does not have such elements.Let L_d be the set of tails wrt d in L, and then apply case 2 to find d'.
- Set $c = d \frown d'$, and we see that L < c.

FET Case 4 Subcase 1

- If α is a limit ordinal, we find that for each γ ∈ α that there are some a, b agreeing for all β ∈ γ + 1.
- We find that a(β) = b(β) = d(β) for all β ∈ γ + 1 ∈ α. If d is not an initial segment of any a ∈ L or b ∈ G by hypothesis so that a < d < b, and d works.
- Otherwise if some a ∈ L has d as an initial segment, then R does not have such elements.Let L_d be the set of tails wrt d in L, and then apply case 2 to find d'.
- Set $c = d \frown d'$, and we see that L < c.
- For any other L < e < R, e(β) = d(β) for all β ∈ α by lexicographical ordering, so d is an initial segment of e, and also by lexicographical ordering d' is an initial segment of e'.

(4月) (1日) (1日)

- If α is a limit ordinal, we find that for each $\gamma \in \alpha$ that there are some *a*, *b* agreeing for all $\beta \in \gamma + 1$.
- We find that a(β) = b(β) = d(β) for all β ∈ γ + 1 ∈ α. If d is not an initial segment of any a ∈ L or b ∈ G by hypothesis so that a < d < b, and d works.
- Otherwise if some a ∈ L has d as an initial segment, then R does not have such elements.Let L_d be the set of tails wrt d in L, and then apply case 2 to find d'.
- Set $c = d \frown d'$, and we see that L < c.
- For any other L < e < R, e(β) = d(β) for all β ∈ α by lexicographical ordering, so d is an initial segment of e, and also by lexicographical ordering d' is an initial segment of e'.
- A similar argument is run if *R* has elements with initial segment *d*

FET Case 4 Subcase 2

• If α is a successor to γ then we have $a \in L$ and $b \in R$ such that a, b agree for all $\beta \in \gamma$ and no $a \in L, b \in R$ agree on all of $\gamma + 1$.

- If α is a successor to γ then we have a ∈ L and b ∈ R such that a, b agree for all β ∈ γ and no a ∈ L, b ∈ R agree on all of γ + 1.
- We obtain a sequence d of length γ such that L < d < R and if d is not an initial segment of a, then a < d, and similarly for b.

- If α is a successor to γ then we have a ∈ L and b ∈ R such that a, b agree for all β ∈ γ and no a ∈ L, b ∈ R agree on all of γ + 1.
- We obtain a sequence d of length γ such that L < d < R and if d is not an initial segment of a, then a < d, and similarly for b.
- Let L_d be the set of tails wrt d in L, similarly for G_d .

- If α is a successor to γ then we have a ∈ L and b ∈ R such that a, b agree for all β ∈ γ and no a ∈ L, b ∈ R agree on all of γ + 1.
- We obtain a sequence d of length γ such that L < d < R and if d is not an initial segment of a, then a < d, and similarly for b.
- Let L_d be the set of tails wrt d in L, similarly for G_d . Since $L_d < R_d$, a(0) < b(0) as there cannot be $(a, b) \in L_d \times R_d$ such that a(0) = b(0).

- If α is a successor to γ then we have a ∈ L and b ∈ R such that a, b agree for all β ∈ γ and no a ∈ L, b ∈ R agree on all of γ + 1.
- We obtain a sequence d of length γ such that L < d < R and if d is not an initial segment of a, then a < d, and similarly for b.
- Let L_d be the set of tails wrt d in L, similarly for G_d . Since $L_d < R_d$, a(0) < b(0) as there cannot be $(a, b) \in L_d \times R_d$ such that a(0) = b(0).
- Since $L \cap R = \emptyset$, d can only belong to at most one.

- If α is a successor to γ then we have a ∈ L and b ∈ R such that a, b agree for all β ∈ γ and no a ∈ L, b ∈ R agree on all of γ + 1.
- We obtain a sequence d of length γ such that L < d < R and if d is not an initial segment of a, then a < d, and similarly for b.
- Let L_d be the set of tails wrt d in L, similarly for G_d . Since $L_d < R_d$, a(0) < b(0) as there cannot be $(a, b) \in L_d \times R_d$ such that a(0) = b(0).
- Since L ∩ R = Ø, d can only belong to at most one. If d ∈ R, then every a ∈ L_d satisfies a(0) = and with L_{d*} the set of tails with respect to this -, we then apply case to L_{d*} and the empty set to obtain d', and then c = d ∩ (-) ∩ d'

- If α is a successor to γ then we have a ∈ L and b ∈ R such that a, b agree for all β ∈ γ and no a ∈ L, b ∈ R agree on all of γ + 1.
- We obtain a sequence d of length γ such that L < d < R and if d is not an initial segment of a, then a < d, and similarly for b.
- Let L_d be the set of tails wrt d in L, similarly for G_d . Since $L_d < R_d$, a(0) < b(0) as there cannot be $(a, b) \in L_d \times R_d$ such that a(0) = b(0).
- Since L ∩ R = Ø, d can only belong to at most one. If d ∈ R, then every a ∈ L_d satisfies a(0) = and with L_{d*} the set of tails with respect to this -, we then apply case to L_{d*} and the empty set to obtain d', and then c = d ∩ (-) ∩ d'.
- A similar argument works for $d \in L$.

Consequences for ordering on

• If $R = \emptyset$, then c = LR consists of plusses; if $L = \emptyset$, then c = LR consists of minuses.

- If $R = \emptyset$, then c = LR consists of plusses; if $L = \emptyset$, then c = LR consists of minuses.
- ℓ(LR) is less than or equal to the least α such that for all surreal numbers a, \$a∈ L∪ R⇒ ℓ(a)<α\$

- If $R = \emptyset$, then c = LR consists of plusses; if $L = \emptyset$, then c = LR consists of minuses.
- ℓ(LR) is less than or equal to the least α such that for all surreal numbers a, \$a∈ L∪ R⇒ ℓ(a)<α\$
- Any *a* of length α can be expressed by a form *LR* where all $b \in L \cup R$ have length less than α .

- If $R = \emptyset$, then c = LR consists of plusses; if $L = \emptyset$, then c = LR consists of minuses.
- ℓ(LR) is less than or equal to the least α such that for all surreal numbers a, \$a∈ L∪ R⇒ ℓ(a)<α\$
- Any *a* of length α can be expressed by a form *LR* where all $b \in L \cup R$ have length less than α .
- If c = LR and d = FG then $c \le d$ if and only if c < G and L < d.

- If $R = \emptyset$, then c = LR consists of plusses; if $L = \emptyset$, then c = LR consists of minuses.
- ℓ(LR) is less than or equal to the least α such that for all surreal numbers a, \$a∈ L∪ R⇒ ℓ(a)<α\$
- Any *a* of length α can be expressed by a form *LR* where all $b \in L \cup R$ have length less than α .
- If c = LR and d = FG then c ≤ d if and only if c < G and L < d.The forward direction is straightforward. In the converse direction, if c < G and L < d, towards a contradiction suppose that d < c.

Consequences for ordering on

- If $R = \emptyset$, then c = LR consists of plusses; if $L = \emptyset$, then c = LR consists of minuses.
- ℓ(LR) is less than or equal to the least α such that for all surreal numbers a, \$a∈ L∪ R⇒ ℓ(a)<α\$
- Any *a* of length α can be expressed by a form *LR* where all $b \in L \cup R$ have length less than α .
- If c = LR and d = FG then $c \le d$ if and only if c < G and L < d. The forward direction is straightforward. In the converse direction, if c < G and L < d, towards a contradiction suppose that d < c. Then L < d < c < R and thus c is an initial segment of d and F < d < c < G so d is an initial segment of c and thus c = d.

A > < > > < > >

Cofinality

(F, G) is cofinal in (L, R) if for all a ∈ L there is an a' ∈ F such that a ≤ b and for all b ∈ R there is a b' ∈ G such that b ≤ a.

4 E b

Cofinality

- (F, G) is cofinal in (L, R) if for all a ∈ L there is an a' ∈ F such that a ≤ b and for all b ∈ R there is a b' ∈ G such that b ≤ a.
- (Theorem 1) If a = LR, F < a < G and (F, G) is cofinal in (L, R) then a = FG.

- A - E - M

Cofinality

- (F, G) is cofinal in (L, R) if for all a ∈ L there is an a' ∈ F such that a ≤ b and for all b ∈ R there is a b' ∈ G such that b ≤ a.
- (Theorem 1) If a = LR, F < a < G and (F, G) is cofinal in (L, R) then a = FG. To see this, towards a contradiction suppose ℓ(b) < ℓ(a) and F < b < G, then by cofinality L < b < R, contradicting the miniamlity of a.

Cofinality

- (F, G) is cofinal in (L, R) if for all a ∈ L there is an a' ∈ F such that a ≤ b and for all b ∈ R there is a b' ∈ G such that b ≤ a.
- (Theorem 1) If a = LR, F < a < G and (F, G) is cofinal in (L, R) then a = FG. To see this, towards a contradiction suppose ℓ(b) < ℓ(a) and F < b < G, then by cofinality L < b < R, contradicting the miniamlity of a.
- (Theorem 2) If (L, R) and (F, G) are mutually cofinal in each other, then LR = FG.

伺下 イヨト イヨト

Cofinality

- (F, G) is cofinal in (L, R) if for all a ∈ L there is an a' ∈ F such that a ≤ b and for all b ∈ R there is a b' ∈ G such that b ≤ a.
- (Theorem 1) If a = LR, F < a < G and (F, G) is cofinal in (L, R) then a = FG. To see this, towards a contradiction suppose ℓ(b) < ℓ(a) and F < b < G, then by cofinality L < b < R, contradicting the miniamlity of a.
- (Theorem 2) If (L, R) and (F, G) are mutually cofinal in each other, then LR = FG. This follows because both pairs define the same element of minimal length.

伺 ト イヨト イヨト

Cofinality

- (F, G) is cofinal in (L, R) if for all a ∈ L there is an a' ∈ F such that a ≤ b and for all b ∈ R there is a b' ∈ G such that b ≤ a.
- (Theorem 1) If a = LR, F < a < G and (F, G) is cofinal in (L, R) then a = FG. To see this, towards a contradiction suppose ℓ(b) < ℓ(a) and F < b < G, then by cofinality L < b < R, contradicting the miniamlity of a.
- (Theorem 2) If (L, R) and (F, G) are mutually cofinal in each other, then LR = FG. This follows because both pairs define the same element of minimal length.
- One immediate consequence of these theorems: for any $a \in$, if $a_L = \{b \mid b < a \land b \subset a\}$ and $a_R = \{b \mid a < b \land b \subset a\}$, then a = LR.

- 4 同 ト - 4 目 ト

Cofinality

- (F, G) is cofinal in (L, R) if for all a ∈ L there is an a' ∈ F such that a ≤ b and for all b ∈ R there is a b' ∈ G such that b ≤ a.
- (Theorem 1) If a = LR, F < a < G and (F, G) is cofinal in (L, R) then a = FG. To see this, towards a contradiction suppose ℓ(b) < ℓ(a) and F < b < G, then by cofinality L < b < R, contradicting the miniamlity of a.
- (Theorem 2) If (L, R) and (F, G) are mutually cofinal in each other, then LR = FG. This follows because both pairs define the same element of minimal length.
- One immediate consequence of these theorems: for any $a \in$, if $a_L = \{b \mid b < a \land b \subset a\}$ and $a_R = \{b \mid a < b \land b \subset a\}$, then a = LR. This is the canonical representation of a.

・ 同 ト ・ ヨ ト ・ ヨ ト

Inverse Cofinality

• There's a partial converse to these cofinality theorems.

- There's a partial converse to these cofinality theorems.
- (Inverse Cofinality) Let a = LR be the canonical representation of a, and also a = FG. Then (F, G) is cofinal in (L, R).

- There's a partial converse to these cofinality theorems.
- (Inverse Cofinality) Let a = LR be the canonical representation of a, and also a = FG. Then (F, G) is cofinal in (L, R).
- Suppose $b \in L$.

- There's a partial converse to these cofinality theorems.
- (Inverse Cofinality) Let a = LR be the canonical representation of a, and also a = FG. Then (F, G) is cofinal in (L, R).
- Suppose b ∈ L.Then b < a < G and by minimality, F < b is impossible, since a is of minimal length such that F < x < G.

- There's a partial converse to these cofinality theorems.
- (Inverse Cofinality) Let a = LR be the canonical representation of a, and also a = FG. Then (F, G) is cofinal in (L, R).
- Suppose b ∈ L.Then b < a < G and by minimality, F < b is impossible, since a is of minimal length such that F < x < G.
- Armed with these results we can begin to define algebraic operations.

• We define $a + b = a_L + b$, $a + b_L a_R + b$, $a + b_R$.

æ

- ∢ ≣ →

向下 くヨト

Addition

• We define $a + b = a_L + b$, $a + b_L a_R + b$, $a + b_R$.

向下 くヨト

æ

- ∢ ≣ →

- We define $a + b = a_L + b$, $a + b_L a_R + b$, $a + b_R$.
- Since $0_L = 0_R = \emptyset$, $a + 0 = a_L + 0$, $a + 0_L a_R + 0$, $a + 0_R = a_L + 0a_R + 0 = a_L a_R$ by the induction hypothesis.
- It's a quick induction argument to show that a + b is always defined, commutative, associative, order-preserving.

- We define $a + b = a_L + b$, $a + b_L a_R + b$, $a + b_R$.
- Since $0_L = 0_R = \emptyset$, $a + 0 = a_L + 0$, $a + 0_L a_R + 0$, $a + 0_R = a_L + 0a_R + 0 = a_L a_R$ by the induction hypothesis.
- It's a quick induction argument to show that a + b is always defined, commutative, associative, order-preserving.
- Inverses can be handled by reversing signs, so $-a = -a_R a_L$.

- We define $a + b = a_L + b$, $a + b_L a_R + b$, $a + b_R$.
- Since $0_L = 0_R = \emptyset$, $a + 0 = a_L + 0$, $a + 0_L a_R + 0$, $a + 0_R = a_L + 0a_R + 0 = a_L a_R$ by the induction hypothesis.
- It's a quick induction argument to show that a + b is always defined, commutative, associative, order-preserving.
- Inverses can be handled by reversing signs, so $-a = -a_R a_L$.
- So is an ordered abelian group.

- We define $a + b = a_L + b$, $a + b_L a_R + b$, $a + b_R$.
- Since $0_L = 0_R = \emptyset$, $a + 0 = a_L + 0$, $a + 0_L a_R + 0$, $a + 0_R = a_L + 0a_R + 0 = a_L a_R$ by the induction hypothesis.
- It's a quick induction argument to show that a + b is always defined, commutative, associative, order-preserving.
- Inverses can be handled by reversing signs, so $-a = -a_R a_L$.
- So is an ordered abelian group.
- (Uniformity) For any representations a = LR, b = FG, a + b = l + b, a + fr + b, a + g.

伺下 イヨト イヨト

- We define $a + b = a_L + b$, $a + b_L a_R + b$, $a + b_R$.
- Since $0_L = 0_R = \emptyset$, $a + 0 = a_L + 0$, $a + 0_L a_R + 0$, $a + 0_R = a_L + 0a_R + 0 = a_L a_R$ by the induction hypothesis.
- It's a quick induction argument to show that a + b is always defined, commutative, associative, order-preserving.
- Inverses can be handled by reversing signs, so $-a = -a_R a_L$.
- So is an ordered abelian group.
- (Uniformity) For any representations a = LR, b = FG, a + b = l + b, a + fr + b, a + g. This follows by inverse cofinality where L is cofinal in a_L, and so on for the other sets.

Multiplication

• Define *ab* =

 $a_Lb + ab_L - a_Lb_L, a_Rb + ab_R - a_Rb_Ra_Lb + ab_R - a_Lb_R, a_Rb + ab_L - a_Lb_R, a_Rb + ab_R - a_Rb_Ra_Lb + ab_R - a_Lb_R, a_Rb + ab_L - a_Lb_R, a_Rb + ab_R - a_Rb_R, a_Rb + ab_R - a_Rb_R - a_Rb_R$

A 10

A B + A B +

э

Multiplication

• Define *ab* =

 $a_Lb + ab_L - a_Lb_L, a_Rb + ab_R - a_Rb_Ra_Lb + ab_R - a_Lb_R, a_Rb + ab_L - a_Lb_R, a_Rb + ab_R - a_Rb_Ra_Lb + ab_R - a_Lb_R, a_Rb + ab_L - a_Lb_R, a_Rb + ab_R - a_Rb_Ra_Lb + ab_R - a_Lb_R, a_Rb + ab_L - a_Lb_R, a_Rb + ab_L - a_Lb_R, a_Rb + ab_R - a_Rb_Ra_Lb + ab_R - a_Lb_R, a_Rb + ab_L - a_Lb_R, a_Rb + ab_R - a_Rb_Ra_Lb + ab_R - a_Lb_R, a_Rb + ab_L - a_Lb_R, a_Rb + ab_R - a_Lb_R, a_Rb + ab_L - a_Lb_R, a_Rb + ab_R - a_Lb_R, a_Rb + ab_R - a_Lb_R, a_Rb + ab_R - a_Lb_R, a_Rb + ab_L - a_Lb_R, a_Rb + ab_R - a_Rb_R, a_Rb + ab_R - a_Rb_R -$

By induction on the natural sum of the lengths of each of the factors we find that *ab* is always defined and for *a* > *b* and *c* > *d* that *ac* - *bc* > *ad* - *bd*.

Multiplication

Define *ab* =

• By induction on the natural sum of the lengths of each of the factors we find that ab is always defined and for a > b and c > d that ac - bc > ad - bd.(Specifically, let P(a,b,c,d) denote the inequality ac - bc > ad - bd, find that P is transitive, and induct on the proper initial segments)

Multiplication

• Define *ab* =

 $a_Lb + ab_L - a_Lb_L, a_Rb + ab_R - a_Rb_Ra_Lb + ab_R - a_Lb_R, a_Rb + ab_L - a_Lb_R, a_Rb + ab_R - a_Rb_Ra_Lb + ab_R - a_Lb_R, a_Rb + ab_L - a_Lb_R, a_Rb + ab_R - a_Rb_Ra_Lb + ab_R - a_Lb_R, a_Rb + ab_L - a_Lb_R, a_Rb + ab_L - a_Lb_R, a_Rb + ab_R - a_Rb_Ra_Lb + ab_R - a_Lb_R, a_Rb + ab_L - a_Lb_R, a_Rb + ab_R - a_Rb_Ra_Lb + ab_R - a_Lb_R, a_Rb + ab_L - a_Lb_R, a_Rb + ab_R - a_Lb_R, a_Rb + ab_L - a_Lb_R, a_Rb + ab_R - a_Lb_R, a_Rb + ab_R - a_Lb_R, a_Rb + ab_R - a_Lb_R, a_Rb + ab_L - a_Lb_R, a_Rb + ab_R - a_Rb_R, a_Rb + ab_R - a_Rb_R -$

- By induction on the natural sum of the lengths of each of the factors we find that ab is always defined and for a > b and c > d that ac bc > ad bd.(Specifically, let P(a,b,c,d) denote the inequality ac bc > ad bd, find that P is transitive, and induct on the proper initial segments)
- To show distributivity and associativity, use induction on $\ell(a) + \ell(b) + \ell(c)$

Multiplication

• Define *ab* =

 $a_Lb + ab_L - a_Lb_L, a_Rb + ab_R - a_Rb_Ra_Lb + ab_R - a_Lb_R, a_Rb + ab_L - a_Lb_R, a_Rb + ab_R - a_Rb_Ra_Lb + ab_R - a_Lb_R, a_Rb + ab_L - a_Lb_R, a_Rb + ab_R - a_Rb_Ra_Lb + ab_R - a_Lb_R, a_Rb + ab_L - a_Lb_R, a_Rb + ab_L - a_Lb_R, a_Rb + ab_R - a_Rb_Ra_Lb + ab_R - a_Lb_R, a_Rb + ab_L - a_Lb_R, a_Rb + ab_R - a_Rb_Ra_Lb + ab_R - a_Lb_R, a_Rb + ab_L - a_Lb_R, a_Rb + ab_R - a_Lb_R, a_Rb + ab_L - a_Lb_R, a_Rb + ab_R - a_Lb_R, a_Rb + ab_R - a_Lb_R, a_Rb + ab_R - a_Lb_R, a_Rb + ab_L - a_Lb_R, a_Rb + ab_R - a_Rb_R, a_Rb + ab_R - a_Rb_R -$

- By induction on the natural sum of the lengths of each of the factors we find that ab is always defined and for a > b and c > d that ac bc > ad bd.(Specifically, let P(a,b,c,d) denote the inequality ac bc > ad bd, find that P is transitive, and induct on the proper initial segments)
- To show distributivity and associativity, use induction on $\ell(a) + \ell(b) + \ell(c)$
- We see $a \cdot 1 = a_L \cdot 1 + a \cdot 0 a_L \cdot 0 a_R \cdot 1 + a \cdot 0 a_R \cdot 0 = a_L \cdot 1 a_R \cdot 1 = a_L a_R = a$

伺下 イヨト イヨト

Multiplication

• Define *ab* =

 $a_Lb + ab_L - a_Lb_L, a_Rb + ab_R - a_Rb_Ra_Lb + ab_R - a_Lb_R, a_Rb + ab_L - a_Lb_R, a_Rb + ab_R - a_Rb_Ra_Lb + ab_R - a_Lb_R, a_Rb + ab_L - a_Lb_R, a_Rb + ab_R - a_Rb_Ra_Lb + ab_R - a_Lb_R, a_Rb + ab_L - a_Lb_R, a_Rb + ab_L - a_Lb_R, a_Rb + ab_R - a_Rb_Ra_Lb + ab_R - a_Lb_R, a_Rb + ab_L - a_Lb_R, a_Rb + ab_R - a_Rb_Ra_Lb + ab_R - a_Lb_R, a_Rb + ab_L - a_Lb_R, a_Rb + ab_R - a_Lb_R, a_Rb + ab_L - a_Lb_R, a_Rb + ab_R - a_Lb_R, a_Rb + ab_R - a_Lb_R, a_Rb + ab_R - a_Lb_R, a_Rb + ab_L - a_Lb_R, a_Rb + ab_L - a_Lb_R, a_Rb + ab_R - a_Lb_R, a_Rb + ab_L - a_Lb_R, a_Rb + ab_L - a_Lb_R, a_Rb + ab_L - a_Lb_R, a_Rb + ab_R - a_Lb_R, a_Rb + ab_L - a_Lb_R, a_Rb + ab_R - a_Rb_R, a_Rb + ab_R - a_Rb_R -$

- By induction on the natural sum of the lengths of each of the factors we find that ab is always defined and for a > b and c > d that ac bc > ad bd.(Specifically, let P(a,b,c,d) denote the inequality ac bc > ad bd, find that P is transitive, and induct on the proper initial segments)
- To show distributivity and associativity, use induction on $\ell(a) + \ell(b) + \ell(c)$
- We see $a \cdot 1 = a_L \cdot 1 + a \cdot 0 a_L \cdot 0 a_R \cdot 1 + a \cdot 0 a_R \cdot 0 = a_L \cdot 1 a_R \cdot 1 = a_L a_R = a$
- Suppose a > 0, b > 0, then P(a, 0, b, 0) follows, ie ab > 0.

< 回 > < 回 > < 回 >

Multiplicative Inverses

• Define $\langle a_1, \ldots a_n \rangle$ where $a_i \in a_L \cup a_R \setminus \{0\}$.

< ∃ >

- Define $\langle a_1, \ldots a_n \rangle$ where $a_i \in a_L \cup a_R \setminus \{0\}$.
- Define $b \circ a_i$ as the unique solution of $(a a_i)b + a_ix = 1$ (which exist by inductive hypothesis guaranteeing that a_i as an initial segment of a has an inverse).

- Define $\langle a_1, \ldots a_n \rangle$ where $a_i \in a_L \cup a_R \setminus \{0\}$.
- Define b ∘ a_i as the unique solution of (a − a_i)b + a_ix = 1 (which exist by inductive hypothesis guaranteeing that a_i as an initial segment of a has an inverse).
- So $\langle \rangle = 0$ and $\langle a_1, \dots, a_n, a_{n+1} \rangle = \langle a_1, \dots, a_n \rangle \circ a_{n+1}$.

- Define $\langle a_1, \ldots a_n \rangle$ where $a_i \in a_L \cup a_R \setminus \{0\}$.
- Define b ∘ a_i as the unique solution of (a − a_i)b + a_ix = 1 (which exist by inductive hypothesis guaranteeing that a_i as an initial segment of a has an inverse).
- So $\langle \rangle = 0$ and $\langle a_1, \dots, a_n, a_{n+1} \rangle = \langle a_1, \dots, a_n \rangle \circ a_{n+1}$.
- Set L = {⟨a₁,..., a_n⟩ | the number of a_i ∈ a_L is even } and similarly define R as the set of ⟨a₁,..., a_n⟩ where the number of a_i ∈ a_L is odd.

- Define $\langle a_1, \ldots a_n \rangle$ where $a_i \in a_L \cup a_R \setminus \{0\}$.
- Define b ∘ a_i as the unique solution of (a − a_i)b + a_ix = 1 (which exist by inductive hypothesis guaranteeing that a_i as an initial segment of a has an inverse).
- So $\langle \rangle = 0$ and $\langle a_1, \dots, a_n, a_{n+1} \rangle = \langle a_1, \dots, a_n \rangle \circ a_{n+1}$.
- Set L = {⟨a₁,..., a_n⟩ | the number of a_i ∈ a_L is even } and similarly define R as the set of ⟨a₁,..., a_n⟩ where the number of a_i ∈ a_L is odd.

•
$$a^{-1} := LR$$

The ω map, map, and Cantor Normal Form

• \$ $\omega(a) := \{0, \omega^{a_{\mathsf{L}}}\} \{\omega^{a_{\mathsf{R}}}\}$.

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

- \$ $\omega(a) := \{0, \omega^{a_{\mathsf{L}}}\} \{\omega^{a_{\mathsf{R}}}\}$.
- We inductively define $\omega_n(a)$ as follows:

The ω map, map, and Cantor Normal Form

- \$ $\omega(a) := \{0, \omega^{a_{\mathsf{L}}}\} \{\omega^{a_{\mathsf{R}}}\}$.
- We inductively define $\omega_n(a)$ as follows: $\omega_1(a) = \omega(a)$

3.5

The ω map, map, and Cantor Normal Form

- \$ $\omega(a) := \{0, \omega^{a_{\mathsf{L}}}\} \{\omega^{a_{\mathsf{R}}}\}$.
- We inductively define $\omega_n(a)$ as follows: $\omega_1(a) = \omega(a)$ and $\omega_{n+1}(a) = \omega(\omega_n(a))$.

3.5

- \$ $\omega(a) := \{0, \omega^{a_{\mathsf{L}}}\} \{\omega^{a_{\mathsf{R}}}\}$.
- We inductively define $\omega_n(a)$ as follows: $\omega_1(a) = \omega(a)$ and $\omega_{n+1}(a) = \omega(\omega_n(a))$.
- We inductively define (a) as follows:

- \$ $\omega(a) := \{0, \omega^{a_{\mathsf{L}}}\} \{\omega^{a_{\mathsf{R}}}\}$.
- We inductively define $\omega_n(a)$ as follows: $\omega_1(a) = \omega(a)$ and $\omega_{n+1}(a) = \omega(\omega_n(a))$.
- We inductively define (a) as follows: Given $a = a_L a_R$,

- \$ $\omega(a) := \{0, \omega^{a_{\mathsf{L}}}\} \{\omega^{a_{\mathsf{R}}}\}$.
- We inductively define $\omega_n(a)$ as follows: $\omega_1(a) = \omega(a)$ and $\omega_{n+1}(a) = \omega(\omega_n(a))$.
- We inductively define (a) as follows: Given $a = a_L a_R$, then (a) : $\omega_n(1), \omega_n((a_L + 1))\omega_n((b_R - 1))$

The ω map, map, and Cantor Normal Form

- \$ ω(a) :={0,ω^a_L}{ω^a_R}\$.
- We inductively define $\omega_n(a)$ as follows: $\omega_1(a) = \omega(a)$ and $\omega_{n+1}(a) = \omega(\omega_n(a))$.
- We inductively define (a) as follows: Given $a = a_L a_R$, then (a) : $\omega_n(1), \omega_n((a_L + 1))\omega_n((b_R - 1))$
- So (0) = $\omega_n(1)\emptyset$ = l.u.b. $_{n\in\omega}\{\omega_n(1) \mid n\in\omega\}=_0$.

The ω map, map, and Cantor Normal Form

- \$ ω(a) :={0,ω^a_L}{ω^a_R}\$.
- We inductively define $\omega_n(a)$ as follows: $\omega_1(a) = \omega(a)$ and $\omega_{n+1}(a) = \omega(\omega_n(a))$.
- We inductively define (a) as follows: Given $a = a_L a_R$, then (a) : $\omega_n(1), \omega_n((a_L + 1))\omega_n((b_R - 1))$
- So $(0) = \omega_n(1) \emptyset = \mathsf{l.u.b.}_{n \in \omega} \{ \omega_n(1) \mid n \in \omega \} =_0.$
- Every surreal number can be uniquely expressed in the form $\sum_{i \in \alpha} \omega^{a_i} r_i$.

The ω map, map, and Cantor Normal Form

- \$ ω(a) :={0,ω^a_L}{ω^a_R}\$.
- We inductively define $\omega_n(a)$ as follows: $\omega_1(a) = \omega(a)$ and $\omega_{n+1}(a) = \omega(\omega_n(a))$.
- We inductively define (a) as follows: Given $a = a_L a_R$, then (a) : $\omega_n(1), \omega_n((a_L + 1))\omega_n((b_R - 1))$
- So $(0) = \omega_n(1) \emptyset = \mathsf{l.u.b.}_{n \in \omega} \{ \omega_n(1) \mid n \in \omega \} =_0.$
- Every surreal number can be uniquely expressed in the form $\sum_{i \in \alpha} \omega^{a_i} r_i$.
- As an immediate consequence, every surreal number $a = \omega^{a_0} r_0(1 + \eta)$, where η is an infinitesimal.

伺下 イヨト イヨト

The ω map, map, and Cantor Normal Form

- \$ ω(a) :={0,ω^a_L}{ω^a_R}\$.
- We inductively define $\omega_n(a)$ as follows: $\omega_1(a) = \omega(a)$ and $\omega_{n+1}(a) = \omega(\omega_n(a))$.
- We inductively define (a) as follows: Given $a = a_L a_R$, then (a) : $\omega_n(1), \omega_n((a_L + 1))\omega_n((b_R - 1))$
- So $(0) = \omega_n(1) \emptyset = \mathsf{l.u.b.}_{n \in \omega} \{ \omega_n(1) \mid n \in \omega \} =_0.$
- Every surreal number can be uniquely expressed in the form $\sum_{i \in \alpha} \omega^{a_i} r_i$.
- As an immediate consequence, every surreal number $a = \omega^{a_0} r_0(1 + \eta)$, where η is an infinitesimal.
- In turn, is RCF, and inverses can be found using traditional formal power series.

Defining exp

• Gonshor uniformly defined an exponential operation on via

$$\exp(a) = \{0, (\exp a_L)[a - a_L]_n, (\exp a_R)[a - a_R]_{2n+1}\}$$
$$\{\frac{\exp(a_R)}{[a_R - a]_n}, \frac{\exp a_L}{[a_L - a]_{2n+1}}\}$$

where $[a]_n$ is the partial series expansion up to n.

Defining exp

• Gonshor uniformly defined an exponential operation on via

$$\exp(a) = \{0, (\exp a_L)[a - a_L]_n, (\exp a_R)[a - a_R]_{2n+1}\}$$
$$\{\frac{\exp(a_R)}{[a_R - a]_n}, \frac{\exp a_L}{[a_L - a]_{2n+1}}\}$$

where $[a]_n$ is the partial series expansion up to n.

• exp has all the desired properties.

Defining exp

• Gonshor uniformly defined an exponential operation on via

$$\exp(a) = \{0, (\exp a_L)[a - a_L]_n, (\exp a_R)[a - a_R]_{2n+1}\}$$
$$\{\frac{\exp(a_R)}{[a_R - a]_n}, \frac{\exp a_L}{[a_L - a]_{2n+1}}\}$$

where $[a]_n$ is the partial series expansion up to n.

- exp has all the desired properties.
- exp(a) is a power of ω for all purely infinite numbers, so for all a ∈ there is a canonical representation of exp a such that if a is not strictly finite then

$$\exp a = \omega^{\omega^b} e^r$$

where *r* is the finite part of *a* and $\omega^{\omega^{b}}$ corresponds to the infinite part of *a*.

Defining exp

• Gonshor uniformly defined an exponential operation on via

$$\exp(a) = \{0, (\exp a_L)[a - a_L]_n, (\exp a_R)[a - a_R]_{2n+1}\}$$
$$\{\frac{\exp(a_R)}{[a_R - a]_n}, \frac{\exp a_L}{[a_L - a]_{2n+1}}\}$$

where $[a]_n$ is the partial series expansion up to n.

- exp has all the desired properties.
- exp(a) is a power of ω for all purely infinite numbers, so for all a ∈ there is a canonical representation of exp a such that if a is not strictly finite then

$$\exp a = \omega^{\omega^b} e^r$$

where *r* is the finite part of *a* and $\omega^{\omega^{b}}$ corresponds to the infinite part of *a*.

Defining log

• We define the natural log for our ω powers $\ln(\omega^{b}) := \ln(\omega^{b_{L}}) + n, \ln(\omega^{b_{R}}) - \omega^{\frac{b_{R}-b}{n}} \ln(\omega^{b_{R}}) - n, \ln(\omega^{b_{L}}) + \omega^{\frac{b-b_{I}}{n}}$ with n running through all natural numbers.

Alexander Berenbeim Introduction to the Surreal Numbers

Defining log

• We define the natural log for our ω powers $\ln(\omega^{b}) := \ln(\omega^{b_{L}}) + n, \ln(\omega^{b_{R}}) - \omega^{\frac{b_{R}-b}{n}} \ln(\omega^{b_{R}}) - n, \ln(\omega^{b_{L}}) + \omega^{\frac{b-b_{l}}{n}}$

with n running through all natural numbers.

• A sanity check: Consider

 $\ln(\omega) = \ln(\omega^1)$. Then

$$\ln(\omega) = \ln(\omega^0) + n\ln(\omega^0) + (\omega^1)^{1/n} = n\omega^{1/n} = \omega^{1/\omega}$$

Defining log

• We define the natural log for our ω powers $\ln(\omega^{b}) := \ln(\omega^{b_{L}}) + n, \ln(\omega^{b_{R}}) - \omega^{\frac{b_{R}-b}{n}} \ln(\omega^{b_{R}}) - n, \ln(\omega^{b_{L}}) + \omega^{\frac{b-b_{l}}{n}}$

with n running through all natural numbers.

• A sanity check: Consider

 $\ln(\omega) = \ln(\omega^1)$. Then

$$\ln(\omega) = \ln(\omega^0) + n \ln(\omega^0) + (\omega^1)^{1/n} = n \omega^{1/n} = \omega^{1/\omega}$$

• For all $a \in sur$, $\log(\omega^{\omega^a})$ is a power of ω .

Defining log

• We define the natural log for our ω powers $\ln(\omega^{b}) := \ln(\omega^{b_{L}}) + n, \ln(\omega^{b_{R}}) - \omega^{\frac{b_{R}-b}{n}} \ln(\omega^{b_{R}}) - n, \ln(\omega^{b_{L}}) + \omega^{\frac{b-b_{l}}{n}}$

with n running through all natural numbers.

• A sanity check: Consider

 $\ln(\omega) = \ln(\omega^1). \text{Then}$

$$\ln(\omega) = \ln(\omega^0) + n \ln(\omega^0) + (\omega^1)^{1/n} = n \omega^{1/n} = \omega^{1/\omega}$$

- For all $a \in sur$, $\log(\omega^{\omega^a})$ is a power of ω .
- The connection between exp and log are related to functions denoted g and h relating the infinite powers of ω.

On, Off, and ∞

• The class of surreal numbers is a totally disconnected when using the standard notion of open intervals.

- The class of surreal numbers is a totally disconnected when using the standard notion of open intervals.
- A gap between two surreal numbers is defined wrt two classes L, R such that if there is no a ∈ L and b ∈ R such that a ≥ b, i.e we represent gaps by games LR.

- The class of surreal numbers is a totally disconnected when using the standard notion of open intervals.
- A gap between two surreal numbers is defined wrt two classes L, R such that if there is no a ∈ L and b ∈ R such that a ≥ b, i.e we represent gaps by games LR.
- While \subset , is properly a gap itself, namely $= \emptyset$

- The class of surreal numbers is a totally disconnected when using the standard notion of open intervals.
- A gap between two surreal numbers is defined wrt two classes L, R such that if there is no a ∈ L and b ∈ R such that a ≥ b, i.e we represent gaps by games LR.
- While \subset , is properly a gap itself, namely $= \emptyset$
- Cheekily, Off $= \emptyset$.

- The class of surreal numbers is a totally disconnected when using the standard notion of open intervals.
- A gap between two surreal numbers is defined wrt two classes L, R such that if there is no a ∈ L and b ∈ R such that a ≥ b, i.e we represent gaps by games LR.
- While \subset , is properly a gap itself, namely $= \emptyset$
- Cheekily, $Off = \emptyset$.
- ∞ is the gap where L is the class of all finite positive and all negative numbers, and R is the class of all infinite numbers.

- The class of surreal numbers is a totally disconnected when using the standard notion of open intervals.
- A gap between two surreal numbers is defined wrt two classes L, R such that if there is no a ∈ L and b ∈ R such that a ≥ b, i.e we represent gaps by games LR.
- While \subset , is properly a gap itself, namely $= \emptyset$
- Cheekily, $Off = \emptyset$.
- ∞ is the gap where L is the class of all finite positive and all negative numbers, and R is the class of all infinite numbers.

Types of Gaps and a topology

• Gaps come in two types with the following normal forms:

$$(I)\sum_{i\in\omega}\omega^{y_i}r_i$$

 $(II)\sum_{i\inlpha}\omega^{y_i}r_i\oplus(\pm\omega^{\Theta})$

where Θ is a gap whose right class contains all y_i , $n \oplus g = n + g_L n + g_R$, and $\omega^{\Theta} = 0, \omega^I a \omega^r b$ with $a, b \in_{>0}$ and $l \in \Theta_L$ and $r \in \Theta_R$.

Types of Gaps and a topology

• Gaps come in two types with the following normal forms:

$$(I)\sum_{i\in }\omega ^{y_{i}}r_{i}$$
 $(II)\sum_{i\in lpha }\omega ^{y_{i}}r_{i}\oplus (\pm \omega ^{\Theta })$

where Θ is a gap whose right class contains all y_i , $n \oplus g = n + g_L n + g_R$, and $\omega^{\Theta} = 0, \omega^l a \omega^r b$ with $a, b \in_{>0}$ and $l \in \Theta_L$ and $r \in \Theta_R$.

• We topologize with a collection of subclasses \mathcal{A} such that:

Types of Gaps and a topology

• Gaps come in two types with the following normal forms:

$$(I)\sum_{i\in\omega}\omega^{y_i}r_i$$
 $(II)\sum_{i\inlpha}\omega^{y_i}r_i\oplus(\pm\omega^{\Theta})$

where Θ is a gap whose right class contains all y_i , $n \oplus g = n + g_L n + g_R$, and $\omega^{\Theta} = 0, \omega^I a \omega^r b$ with $a, b \in_{>0}$ and $I \in \Theta_L$ and $r \in \Theta_R$.

• We topologize with a collection of subclasses \mathcal{A} such that: (1) $\emptyset, \in \mathcal{A}$;

Types of Gaps and a topology

• Gaps come in two types with the following normal forms:

$$(I)\sum_{i\in }\omega ^{y_{i}}r_{i}$$
 $(II)\sum_{i\in lpha }\omega ^{y_{i}}r_{i}\oplus (\pm \omega ^{\Theta })$

where Θ is a gap whose right class contains all y_i , $n \oplus g = n + g_L n + g_R$, and $\omega^{\Theta} = 0, \omega^I a \omega^r b$ with $a, b \in_{>0}$ and $I \in \Theta_L$ and $r \in \Theta_R$.

We topologize with a collection of subclasses A such that:
 (1) Ø, ∈ A;
 (2) (∪_{i∈I} A_i) ∈ A for any subcollection of A_i indexed by a proper set;

Types of Gaps and a topology

• Gaps come in two types with the following normal forms:

$$(I)\sum_{i\in\omega}\omega^{y_i}r_i$$
 $(II)\sum_{i\inlpha}\omega^{y_i}r_i\oplus(\pm\omega^{\Theta})$

where Θ is a gap whose right class contains all y_i , $n \oplus g = n + g_L n + g_R$, and $\omega^{\Theta} = 0, \omega^l a \omega^r b$ with $a, b \in_{>0}$ and $l \in \Theta_L$ and $r \in \Theta_R$.

We topologize with a collection of subclasses A such that:
 (1) Ø, ∈ A; (2) (∪ A_i) ∈ A for any subcollection of A_i indexed by a proper set; (3) ∩ A_i indexed by a finite set I.

Types of Gaps and a topology

• Gaps come in two types with the following normal forms:

$$(I)\sum_{i\in\omega}\omega^{y_i}r_i$$
 $(II)\sum_{i\inlpha}\omega^{y_i}r_i\oplus(\pm\omega^{\Theta})$

where Θ is a gap whose right class contains all y_i , $n \oplus g = n + g_L n + g_R$, and $\omega^{\Theta} = 0, \omega^I a \omega^r b$ with $a, b \in_{>0}$ and $I \in \Theta_L$ and $r \in \Theta_R$.

- We topologize with a collection of subclasses A such that:
 (1) Ø, ∈ A; (2) (∪ A_i) ∈ A for any subcollection of A_i indexed by a proper set; (3) ∩ A_i indexed by a finite set I.
- So an interval of $\ is open if it has endpoints in <math display="inline">\cup \{, Off\}$ and it does not contain it's own endpoints.

Types of Gaps and a topology

• Gaps come in two types with the following normal forms:

$$(I)\sum_{i\in\omega}\omega^{y_i}r_i$$
 $(II)\sum_{i\inlpha}\omega^{y_i}r_i\oplus(\pm\omega^{\Theta})$

where Θ is a gap whose right class contains all y_i , $n \oplus g = n + g_L n + g_R$, and $\omega^{\Theta} = 0, \omega^I a \omega^r b$ with $a, b \in_{>0}$ and $I \in \Theta_L$ and $r \in \Theta_R$.

- We topologize with a collection of subclasses A such that:
 (1) Ø, ∈ A; (2) (∪ A_i) ∈ A for any subcollection of A_i indexed by a proper set; (3) ∩ A_i indexed by a finite set I.
- So an interval of $\ is open if it has endpoints in <math display="inline">\cup \{, Off\}$ and it does not contain it's own endpoints.
- Off. ∞) is an open interval by (∞,) is not.
 Alexander Berenbeim Introduction to the Surreal Numbers